Personalized 3D printed bone scaffolds: A review

被引:94
|
作者
Mirkhalaf, Mohammad [1 ,2 ,3 ]
Men, Yinghui [1 ]
Wang, Rui [1 ]
No, Young [1 ,2 ]
Zreiqat, Hala [1 ,2 ]
机构
[1] Univ Sydney, Sch Biomed Engn, Biomat & Tissue Engn Res Unit, Camperdown, NSW 2006, Australia
[2] Australian Res Council Training Ctr Innovat Bioeng, Sydney, NSW 2006, Australia
[3] Queensland Univ Technol, Sch Mech Med & Proc Engn, 2 George St, Brisbane, QLD 4000, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
Bone tissue scaffolds; 3D printing; Bioinspiration; Architecture; POROUS HYDROXYAPATITE SCAFFOLDS; BIOACTIVE GLASS SCAFFOLDS; IN-VIVO EVALUATION; CALCIUM-PHOSPHATE; MECHANICAL-PROPERTIES; CERAMIC SCAFFOLDS; HIGH-STRENGTH; BIOLOGICAL-PROPERTIES; TRICALCIUM PHOSPHATE; COMPOSITE SCAFFOLDS;
D O I
10.1016/j.actbio.2022.04.014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
3D printed bone scaffolds have the potential to replace autografts and allografts because of advantages such as unlimited supply and the ability to tailor the scaffolds' biochemical, biological and biophysical properties. Significant progress has been made over the past decade in additive manufacturing techniques to 3D print bone grafts, but challenges remain in the lack of manufacturing techniques that can recapit-ulate both mechanical and biological functions of native bones. The purpose of this review is to outline the recent progress and challenges of engineering an ideal synthetic bone scaffold and to provide sugges-tions for overcoming these challenges through bioinspiration, high-resolution 3D printing, and advanced modeling techniques. The article provides a short overview of the progress in developing the 3D printed scaffolds for the repair and regeneration of critical size bone defects.Statement of significanceTreatment of critical size bone defects is still a tremendous clinical challenge. To address this challenge, diverse sets of advanced manufacturing approaches and materials have been developed for bone tissue scaffolds. 3D printing has sparked much interest because it provides a close control over the scaffold's internal architecture and in turn its mechanical and biological properties. This article provides a critical overview of the relationships between material compositions, printing techniques, and properties of the scaffolds and discusses the current technical challenges facing their successful translation to the clinic. Bioinspiration, high-resolution printing, and advanced modeling techniques are discussed as future direc-tions to address the current challenges.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:110 / 124
页数:15
相关论文
共 50 条
  • [41] Novel 3d Printed Bioceramic Scaffolds as In Vitro Models for Bone Tissue Regeneration
    Mancuso, E.
    Bretcanu, O.
    Birch, M.
    Marshall, M.
    Dalgarno, K.
    TISSUE ENGINEERING PART A, 2015, 21 : S269 - S270
  • [42] Engineered 3D printed poly(ε-caprolactone)/graphene scaffolds for bone tissue engineering
    Wang, Weiguang
    Passarini Junior, Jose Roberto
    Lopes Nalesso, Paulo Roberto
    Musson, David
    Cornish, Jillian
    Mendonca, Fernanda
    Caetano, Guilherme Ferreira
    Bartolo, Paulo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 100 : 759 - 770
  • [43] 3D Printed Poly(Propylene Fumarate) Bone Scaffolds Modified to Induce Vascularization
    Kraynak, Chelsea A.
    Melchiorri, Anthony J.
    Fisher, John P.
    TISSUE ENGINEERING PART A, 2014, 20 : S136 - S137
  • [44] PARETO OPTIMIZATION OF TISSUE AND BLOOD VESSEL GROWTH IN 3D PRINTED BONE SCAFFOLDS
    Arefin, Amit M. E.
    Egan, Paul F.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3B, 2023,
  • [45] Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration
    Huang, Boyang
    Vyas, Cian
    Roberts, Iwan
    Poutrel, Quentin-Arthur
    Chiang, Wei-Hung
    Blaker, Jonny J.
    Huang, Zhucheng
    Bartolo, Paulo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 98 : 266 - 278
  • [46] 3D Printed Biphasic Osteon-like Scaffolds for Bone Tissue Engineering
    Piard, C.
    Fisher, J. P.
    TISSUE ENGINEERING PART A, 2017, 23 : S104 - S104
  • [47] Applications of 3D printed bone tissue engineering scaffolds in the stem cell field
    Su, Xin
    Wang, Ting
    Guo, Shu
    REGENERATIVE THERAPY, 2021, 16 : 63 - 72
  • [48] Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration
    Camarero-Espinosa, Sandra
    Moroni, Lorenzo
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [49] Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration
    Geng, Mengru
    Zhang, Qianqian
    Gu, Jiani
    Yang, Jin
    Du, Haibo
    Jia, Yating
    Zhou, Xiaojun
    He, Chuanglong
    BIOMATERIALS SCIENCE, 2021, 9 (07) : 2631 - 2646
  • [50] Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration
    Ma, Jiaqi
    Li, Yumeng
    Mi, Yujing
    Gong, Qiannan
    Zhang, Pengfei
    Meng, Bing
    Wang, Jue
    Wang, Jing
    Fan, Yawei
    JOURNAL OF TISSUE ENGINEERING, 2024, 15