Multi-view dimensionality reduction learning with hierarchical sparse feature selection

被引:0
|
作者
Guo, Wei [1 ,2 ]
Wang, Zhe [1 ,2 ]
Yang, Hai [2 ]
Du, Wenli [1 ]
机构
[1] East China Univ Sci & Technol, Minist Educ, Key Lab Smart Mfg Energy Chem Proc, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
基金
美国国家科学基金会;
关键词
Multi-view learning; Dimensionality reduction; View selection; Feature selection;
D O I
10.1007/s10489-022-04161-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view data can depict samples from various views and learners can benefit from such complementary information, so it has attracted extensive studies in recent years. However, it always locates in high-dimensional space and brings noisy or redundant views and features into the learning process, which can decrease the performance of the learner. To address the above issue, we propose a novel unsupervised Multi-view Dimensionality Reduction learning framework with Hierarchical Sparse Feature Selection (MvDRHSFS) to learn a low-dimensional subspace by jointly selecting the most informative views and features hierarchically. More specifically, we penalize the projection matrix with Frobenius norm (F-norm) and l(2,1)-norm to select the most informative views and features hierarchically. Under the penalty of the two regularization terms, some projection-based Sigle-view Dimensionality Reduction (SvDR) methods can learn a more meaningful low-dimensional subspace of multi-view data. In practical implementation, we use the regression type of PCA and relax the orthogonal constraint of the projection matrix to learn the low-dimensional subspace in a more flexible way. To find the optimal solution of the proposed learning framework, we derive an effective way to optimize the given formulation and give the theoretical analysis about the convergence for the optimization algorithm. Extensive experiment results on several real-world datasets demonstrate the feasibility and superiority of our proposed learning framework.
引用
收藏
页码:12774 / 12791
页数:18
相关论文
共 50 条
  • [31] A Convex Multi-view Low-Rank Sparse Regression for Feature Selection and Clustering
    Lu, Yao
    Liu, Jin-Xing
    Kong, Xiang-Zhen
    Shang, Jun-Liang
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 2183 - 2186
  • [32] Semi-supervised feature selection analysis with structured multi-view sparse regularization
    Shi, Caijuan
    Duan, Changyu
    Gu, Zhibin
    Tian, Qi
    An, Gaoyun
    Zhao, Ruizhen
    NEUROCOMPUTING, 2019, 330 : 412 - 424
  • [33] Online Unsupervised Multi-view Feature Selection
    Shao, Weixiang
    He, Lifang
    Lu, Chun-Ta
    Wei, Xiaokai
    Yu, Philip S.
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1203 - 1208
  • [34] DISCRIMINATIVE MULTI-VIEW FEATURE SELECTION AND FUSION
    Liu, Yanbin
    Liao, Binbing
    Han, Yahong
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [35] Generalized Multi-view Unsupervised Feature Selection
    Liu, Yue
    Zhang, Changqing
    Zhu, Pengfei
    Hu, Qinghua
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 469 - 478
  • [36] Feature selection with multi-view data: A survey
    Zhang, Rui
    Nie, Feiping
    Li, Xuelong
    Wei, Xian
    INFORMATION FUSION, 2019, 50 : 158 - 167
  • [37] Multi-view SVM Classification with Feature Selection
    Niu, Yuting
    Shang, Yuan
    Tian, Yingjie
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 405 - 412
  • [38] Multi-view unsupervised complementary feature selection with multi-order similarity learning
    Cao, Zhiwen
    Xie, Xijiong
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [39] Incomplete Multi-View Clustering Based on Dynamic Dimensionality Reduction Weighted Graph Learning
    Yu, Yaosong
    Sun, Dongpu
    IEEE ACCESS, 2024, 12 : 19087 - 19099
  • [40] Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning
    Li, Bing
    Yuan, Chunfeng
    Xiong, Weihua
    Hu, Weiming
    Peng, Houwen
    Ding, Xinmiao
    Maybank, Steve
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2554 - 2560