Functional impact of multi-omic interactions in lung cancer

被引:0
|
作者
Diaz-Campos, Miguel Angel [1 ]
Vasquez-Arriaga, Jorge [1 ]
Ochoa, Soledad [1 ,2 ]
Hernandez-Lemus, Enrique [1 ,3 ]
机构
[1] Natl Inst Genom Med, Computat Genom Div, Mexico City, Mexico
[2] Cedars Sinai Med Ctr, Dept Obstet & Gynecol, Los Angeles, CA USA
[3] Univ Nacl Autonoma Mexico, Ctr Complex Sci, Mexico City, Mexico
关键词
lung adenocarcinoma; lung squamous cell carcinoma; multiomics; mutual information; network construction; computational analysis; RIBOSOMAL-PROTEIN S6; DOWN-REGULATION; R PACKAGE; METHYLATION; EXPRESSION; RNA; PROLIFERATION; CENTRALITY; MIR-125B; GROWTH;
D O I
10.3389/fgene.2024.1282241
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Lung tumors are a leading cause of cancer-related death worldwide. Lung cancers are highly heterogeneous on their phenotypes, both at the cellular and molecular levels. Efforts to better understand the biological origins and outcomes of lung cancer in terms of this enormous variability often require of high-throughput experimental techniques paired with advanced data analytics. Anticipated advancements in multi-omic methodologies hold potential to reveal a broader molecular perspective of these tumors. This study introduces a theoretical and computational framework for generating network models depicting regulatory constraints on biological functions in a semi-automated way. The approach successfully identifies enriched functions in analyzed omics data, focusing on Adenocarcinoma (LUAD) and Squamous cell carcinoma (LUSC, a type of NSCLC) in the lung. Valuable information about novel regulatory characteristics, supported by robust biological reasoning, is illustrated, for instance by considering the role of genes, miRNAs and CpG sites associated with NSCLC, both novel and previously reported. Utilizing multi-omic regulatory networks, we constructed robust models elucidating omics data interconnectedness, enabling systematic generation of mechanistic hypotheses. These findings offer insights into complex regulatory mechanisms underlying these cancer types, paving the way for further exploring their molecular complexity.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genetic prediction of multi-omic traits
    Linda Koch
    Nature Reviews Genetics, 2023, 24 : 346 - 346
  • [42] Multi-omic blood test for early detection of cancer and pre-cancer
    Baker, M.
    Cameron, J. M.
    Brennan, P.
    Butler, H.
    Antoniou, G.
    Christie, L.
    Conn, J.
    Connal, S.
    McHardy, R.
    Sala, A.
    Smith, B.
    Palmer, D.
    CLINICAL CHEMISTRY, 2024, 70
  • [43] Multi-omic machine learning predictor of chemotherapy response of esophageal cancer
    Sasagawa, Shota
    Kato, Hiroaki
    Nagaoka, Koji
    Todd, Johnson
    Maejima, Kazuhiro
    Okawa, Yuki
    Kakimi, Kazuhiro
    Yasuda, Takushi
    Nakagawa, Hidewaki
    CANCER SCIENCE, 2023, 114 : 1012 - 1012
  • [44] Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer
    Michael A. Kiebish
    Jennifer Cullen
    Prachi Mishra
    Amina Ali
    Eric Milliman
    Leonardo O. Rodrigues
    Emily Y. Chen
    Vladimir Tolstikov
    Lixia Zhang
    Kiki Panagopoulos
    Punit Shah
    Yongmei Chen
    Gyorgy Petrovics
    Inger L. Rosner
    Isabell A. Sesterhenn
    David G. McLeod
    Elder Granger
    Rangaprasad Sarangarajan
    Viatcheslav Akmaev
    Alagarsamy Srinivasan
    Shiv Srivastava
    Niven R. Narain
    Albert Dobi
    Journal of Translational Medicine, 18
  • [45] Multi-omic machine learning predictor of breast cancer therapy response
    Sammut, Stephen-John
    Crispin-Ortuzar, Mireia
    Chin, Suet-Feung
    Provenzano, Elena
    Bardwell, Helen A.
    Ma, Wenxin
    Cope, Wei
    Dariush, Ali
    Dawson, Sarah-Jane
    Abraham, Jean E.
    Dunn, Janet
    Hiller, Louise
    Thomas, Jeremy
    Cameron, David A.
    Bartlett, John M. S.
    Hayward, Larry
    Pharoah, Paul D.
    Markowetz, Florian
    Rueda, Oscar M.
    Earl, Helena M.
    Caldas, Carlos
    NATURE, 2022, 601 (7894) : 623 - +
  • [46] Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer
    Kiebish, Michael A.
    Cullen, Jennifer
    Mishra, Prachi
    Ali, Amina
    Milliman, Eric
    Rodrigues, Leonardo O.
    Chen, Emily Y.
    Tolstikov, Vladimir
    Zhang, Lixia
    Panagopoulos, Kiki
    Shah, Punit
    Chen, Yongmei
    Petrovics, Gyorgy
    Rosner, Inger L.
    Sesterhenn, Isabell A.
    McLeod, David G.
    Granger, Elder
    Sarangarajan, Rangaprasad
    Akmaev, Viatcheslav
    Srinivasan, Alagarsamy
    Srivastava, Shiv
    Narain, Niven R.
    Dobi, Albert
    JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [47] Multi-omic machine learning predictor of chemotherapy response of esophageal cancer
    Sasagawa, Shota
    Kato, Hiroaki
    Nagaoka, Koji
    Todd, Johnson
    Maejima, Kazuhiro
    Okawa, Yuki
    Kakimi, Kazuhiro
    Yasuda, Takushi
    Nakagawa, Hidewaki
    CANCER SCIENCE, 2023, 114 : 1469 - 1469
  • [48] Multi-omic machine learning predictor of breast cancer therapy response
    Stephen-John Sammut
    Mireia Crispin-Ortuzar
    Suet-Feung Chin
    Elena Provenzano
    Helen A. Bardwell
    Wenxin Ma
    Wei Cope
    Ali Dariush
    Sarah-Jane Dawson
    Jean E. Abraham
    Janet Dunn
    Louise Hiller
    Jeremy Thomas
    David A. Cameron
    John M. S. Bartlett
    Larry Hayward
    Paul D. Pharoah
    Florian Markowetz
    Oscar M. Rueda
    Helena M. Earl
    Carlos Caldas
    Nature, 2022, 601 : 623 - 629
  • [50] Multi-omic analysis of dysregulated pathways in triple negative breast cancer
    Sajjad, Fatima
    Jalal, Ahmer
    Jalal, Amir
    Gul, Zulekha
    Mubeen, Hira
    Rizvi, Seemal Zahra
    Un-Nisa, Ex Alim
    Asghar, Andleeb
    Butool, Farah
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2024, 20 (04) : 450 - 462