A notion of vertex equitability for proper labellings

被引:0
|
作者
Bensmail, Julien [1 ]
机构
[1] Univ Cote Azur, CNRS, Inria, I3S, Villeurbanne, France
关键词
Irregular labelling; Proper labelling; Irregularity strength; 1-2-3; conjecture; Equitability; IRREGULARITY STRENGTH; COMPLEXITY;
D O I
10.1016/j.dam.2023.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an equitable version of proper labellings of graphs, where the notion of equitability is with respect to the resulting vertex sums. That is, we are interested in k-labellings where, when computing the sums of labels incident to the vertices, we get a vertex-colouring that is not proper only, but also equitable. For a given graph G, we are interested in the parameter chi(Sigma)(G), which is the smallest k >= 1 (if any) such that G admits such k-labellings. Through examples of particular graph classes, we observe that this new parameter chi(Sigma) behaves sort of similarly to the parameters chi(Sigma) and s, whose parameters lie behind the 1-2-3 Conjecture and the irregularity strength of graphs, in a more or less strong way, depending on the graphs considered. We then prove general bounds on chi(Sigma), showing that, in some contexts (trees and connected graphs with large minimum degree), this parameter is bounded above by roughly 3n/4 for an n-graph. We also prove that determining chi(Sigma) is NP-hard in general, and finish off with directions for further work on the topic. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 247
页数:20
相关论文
共 50 条
  • [31] The graph polynomial and the number of proper vertex colorings
    Tarsi, M
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (03) : 1089 - +
  • [32] Note on vertex and total proper connection numbers
    Chizmar, Emily
    Magnant, Colton
    Nowbandegani, Pouria Salehi
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (02) : 103 - 106
  • [33] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478
  • [34] On (Strong) Proper Vertex-Connection of Graphs
    Jiang, Hui
    Li, Xueliang
    Zhang, Yingying
    Zhao, Yan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 415 - 425
  • [35] Rainbow Induced Subgraphs in Proper Vertex Colorings
    Kisielewicz, Andrzej
    Szykula, Marek
    FUNDAMENTA INFORMATICAE, 2011, 111 (04) : 437 - 451
  • [36] THE SEMANTICS OF PROPER NAMES - REMARKS ON THE NOTION OF A RIGID DESIGNATOR
    RECANATI, F
    LANGUE FRANCAISE, 1983, (57): : 106 - 118
  • [37] On a practical notion of Geoffrion proper optimality in multicriteria optimization
    Shukla, P. K.
    Dutta, J.
    Deb, K.
    Kesarwani, P.
    OPTIMIZATION, 2020, 69 (7-8) : 1513 - 1539
  • [38] Vertex-distinguishing proper edge-colorings
    Burris, AC
    Schelp, RH
    JOURNAL OF GRAPH THEORY, 1997, 26 (02) : 73 - 82
  • [39] A Note on Edge Weightings Inducing Proper Vertex Colorings
    Anna M. Limbach
    Robert Scheidweiler
    Graphs and Combinatorics, 2018, 34 : 1269 - 1277
  • [40] A Note on Edge Weightings Inducing Proper Vertex Colorings
    Limbach, Anna M.
    Scheidweiler, Robert
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1269 - 1277