A notion of vertex equitability for proper labellings

被引:0
|
作者
Bensmail, Julien [1 ]
机构
[1] Univ Cote Azur, CNRS, Inria, I3S, Villeurbanne, France
关键词
Irregular labelling; Proper labelling; Irregularity strength; 1-2-3; conjecture; Equitability; IRREGULARITY STRENGTH; COMPLEXITY;
D O I
10.1016/j.dam.2023.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an equitable version of proper labellings of graphs, where the notion of equitability is with respect to the resulting vertex sums. That is, we are interested in k-labellings where, when computing the sums of labels incident to the vertices, we get a vertex-colouring that is not proper only, but also equitable. For a given graph G, we are interested in the parameter chi(Sigma)(G), which is the smallest k >= 1 (if any) such that G admits such k-labellings. Through examples of particular graph classes, we observe that this new parameter chi(Sigma) behaves sort of similarly to the parameters chi(Sigma) and s, whose parameters lie behind the 1-2-3 Conjecture and the irregularity strength of graphs, in a more or less strong way, depending on the graphs considered. We then prove general bounds on chi(Sigma), showing that, in some contexts (trees and connected graphs with large minimum degree), this parameter is bounded above by roughly 3n/4 for an n-graph. We also prove that determining chi(Sigma) is NP-hard in general, and finish off with directions for further work on the topic. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 247
页数:20
相关论文
共 50 条
  • [1] An Improved Bound for Equitable Proper Labellings
    Bensmail, Julien
    Marcille, Clara
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 82 - 97
  • [2] Antimagic labellings of the complete graphs with a common vertex
    Arisoy, M.
    International Journal of Mathematical Education in Science and Technology, 29 (02):
  • [3] On Proper Labellings of Graphs with Minimum Label Sum
    Bensmail, Julien
    Fioravantes, Foivos
    Nisse, Nicolas
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 56 - 68
  • [4] MAXIMISING 1'S THROUGH PROPER LABELLINGS
    Bensmail, Julien
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [5] On Proper Labellings of Graphs with Minimum Label Sum
    Bensmail, Julien
    Fioravantes, Foivos
    Nisse, Nicolas
    ALGORITHMICA, 2022, 84 (04) : 1030 - 1063
  • [6] On Proper Labellings of Graphs with Minimum Label Sum
    Julien Bensmail
    Foivos Fioravantes
    Nicolas Nisse
    Algorithmica, 2022, 84 : 1030 - 1063
  • [7] On the notion 'proper language'
    Petel, Humphrey P. van Polanen
    LANGUAGE SCIENCES, 2006, 28 (05) : 508 - 520
  • [8] EDGE-INJECTIVE AND EDGE-SURJECTIVE VERTEX LABELLINGS
    Brandt, Stephan
    Miskuf, Jozef
    Rautenbach, Dieter
    Regen, Friedrich
    Ruzsa, Imre Z.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 666 - 683
  • [9] Graphs without gap-vertex-labellings: Families and bounds
    Weffort-Santos, Celso A.
    Schouery, Rafael C. S.
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 317 - 335
  • [10] On total vertex-irregular labellings for several types of trees
    Nurdin
    Baskoro, E. T.
    Salman, A. N. M.
    Gaos, N. N.
    UTILITAS MATHEMATICA, 2020, 117 : 125 - 138