Attention-based multi-scale feature fusion network for myopia grading using optical coherence tomography images

被引:4
|
作者
Huang, Gengyou [1 ]
Wen, Yang [2 ]
Qian, Bo [1 ]
Bi, Lei [3 ]
Chen, Tingli [4 ]
Sheng, Bin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comupter Sci & Engn, Shanghai, Peoples R China
[2] Shenzhen Univ, Sch Elect & Informat Engn, Shenzhen, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Translat Med, Shanghai, Peoples R China
[4] Huadong Sanat, Wuxi, Jiangsu, Peoples R China
来源
VISUAL COMPUTER | 2024年 / 40卷 / 09期
基金
美国国家科学基金会;
关键词
Optical coherence tomography (OCT); Myopia grading; Deep Learning; Vision Transformer; Attention fusion; OCT;
D O I
10.1007/s00371-023-03189-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Myopia is a serious threat to eye health and can even cause blindness. It is important to grade myopia and carry out targeted intervention. Nowadays, various studies using deep learning models based on optical coherence tomography (OCT) images to screen for high myopia. However, since regions of interest (ROIs) of pre-myopia and low myopia on OCT images are relatively small, it is rather difficult to use OCT images to conduct detailed myopia grading. There are few studies using OCT images for more detailed myopia grading. To address these problems, we propose a novel attention-based multi-scale feature fusion network named AMFF for myopia grading using OCT images. The proposed AMFF mainly consists of five modules: a pre-trained vision transformer (ViT) module, a multi-scale convolutional module, an attention feature fusion module, an Avg-TopK pooling module and a fully connected (FC) classifier. Firstly, unsupervised pre-training of ViT on the training set can better extract feature maps. Secondly, multi-scale convolutional layers further extract multi-scale feature maps to obtain more receptive fields and extract scale-invariant features. Thirdly, feature maps of different scales are fused through channel attention and spatial attention to further obtain more meaningful features. Lastly, the most prominent features are obtained by the weighted average of the highest activation values of each channel, and then they are used to classify myopia through a fully connected layer. Extensive experiments show that our proposed model has the superior performance compared with other state-of-the-art myopia grading models.
引用
收藏
页码:6627 / 6638
页数:12
相关论文
共 50 条
  • [41] Small Object Detection using Multi-scale Feature Fusion and Attention
    Liu, Baokai
    Du, Shiqiang
    Li, Jiacheng
    Wang, Jianhua
    Liu, Wenjie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7246 - 7251
  • [42] Self-Attention-based Multi-Scale Feature Fusion Network for Road Ponding Segmentation
    Yang, Shangyu
    Zhang, Ronghui
    Sun, Wencai
    Chen, Shengru
    Ye, Cong
    Wu, Hao
    Li, Mengran
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,
  • [43] Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion
    She, Xiangyang
    Liu, Zhe
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (01) : 198 - 206
  • [44] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Zhaoxin Li
    Shuhua Lu
    Yishan Dong
    Jingyuan Guo
    The Visual Computer, 2023, 39 : 1045 - 1056
  • [45] Multi-Scale Feature Fusion Attention Network for Infrared Small Target Detection
    Zhang, Yidan
    Li, Chunlei
    Liu, Yundong
    Liu, Zhoufeng
    Yang, Ruimin
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [46] Fusion of Geometric Attention and Multi-Scale Feature Network for Point Cloud Registration
    Du, Jiajin
    Bai, Zhengyao
    Liu, Xuheng
    Li, Zekai
    Xiao, Xiao
    You, Yilin
    Computer Engineering and Applications, 2024, 60 (12) : 234 - 244
  • [47] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Li, Zhaoxin
    Lu, Shuhua
    Dong, Yishan
    Guo, Jingyuan
    VISUAL COMPUTER, 2023, 39 (03): : 1045 - 1056
  • [48] Multi-scale feature fusion pyramid attention network for single image dehazing
    Liu, Jianlei
    Liu, Peng
    Zhang, Yuanke
    IET IMAGE PROCESSING, 2023, 17 (09) : 2726 - 2735
  • [49] Siamese Network Tracker Based on Multi-Scale Feature Fusion
    Zhao, Jiaxu
    Niu, Dapeng
    SYSTEMS, 2023, 11 (08):
  • [50] Residual attention-based multi-scale script identification in scene text images
    Ma, Mengkai
    Wang, Qiu-Feng
    Huang, Shan
    Huang, Shen
    Goulermas, Yannis
    Huang, Kaizhu
    NEUROCOMPUTING, 2021, 421 : 222 - 233