Distributed control for geometric pattern formation of large-scale multirobot systems

被引:0
|
作者
Giusti, Andrea [1 ]
Maffettone, Gian Carlo [2 ]
Fiore, Davide [3 ]
Coraggio, Marco [2 ]
di Bernardo, Mario [1 ,2 ]
机构
[1] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
[2] Scuola Super Meridionale, Naples, Italy
[3] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
来源
关键词
multiagent systems; pattern formation; distributed control; swarm robotics; collective dynamics; STRATEGIES; SWARM;
D O I
10.3389/frobt.2023.1219931
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Introduction: Geometric pattern formation is crucial in many tasks involving large-scale multi-agent systems. Examples include mobile agents performing surveillance, swarms of drones or robots, and smart transportation systems. Currently, most control strategies proposed to achieve pattern formation in network systems either show good performance but require expensive sensors and communication devices, or have lesser sensor requirements but behave more poorly.Methods and result: In this paper, we provide a distributed displacement-based control law that allows large groups of agents to achieve triangular and square lattices, with low sensor requirements and without needing communication between the agents. Also, a simple, yet powerful, adaptation law is proposed to automatically tune the control gains in order to reduce the design effort, while improving robustness and flexibility.Results: We show the validity and robustness of our approach via numerical simulations and experiments, comparing it, where possible, with other approaches from the existing literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Distributed Control of Networked Large-Scale Systems Based on A Scheduling Middleware
    Lin, Yufeng
    Wang, Jia
    Han, Qing-Long
    Jarvis, Dennis
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 5523 - 5528
  • [22] Stability of large-scale distributed parameter systems
    Ladde, GS
    Li, TT
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (03): : 311 - 323
  • [23] Energy efficiency in large-scale distributed systems
    Tuan Anh Trinh
    Hlavacs, Helmut
    Talia, Domenico
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE, 2012, 28 (05): : 743 - 744
  • [24] Independent recovery in large-scale distributed systems
    Triantafillou, P
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1996, 22 (11) : 812 - 826
  • [25] Expectations and challenges in large-scale distributed systems
    Bacon, J
    IEEE CONCURRENCY, 2000, 8 (01): : 2 - 3
  • [26] A dependability layer for large-scale distributed systems
    Cristea, Valentin
    Dobre, C.
    Pop, F.
    Stratan, C.
    Costan, A.
    Leordeanu, C.
    Tirsa, E.
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2011, 2 (02) : 109 - 118
  • [27] Failure detectors for large-scale distributed systems
    Hayashibara, N
    Cherif, A
    Katayama, T
    21ST IEEE SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 404 - 409
  • [28] Distributed Orchestration in Large-scale IoT Systems
    Yigitoglu, Emre
    Liu, Ling
    Looper, Margaret
    Pu, Calton
    2017 IEEE 2ND INTERNATIONAL CONGRESS ON INTERNET OF THINGS (IEEE ICIOT), 2017, : 58 - 65
  • [29] Robust Scheduling for Large-Scale Distributed Systems
    Lee, Young Choon
    King, Jayden
    Kim, Young Ki
    Hong, Seok-Hee
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 38 - 45
  • [30] Adaptation Engine for Large-Scale Distributed Systems
    Nemes, Tania
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 244 - 251