Excited state spectroscopy and spin splitting in single layer MoS2 quantum dots

被引:4
|
作者
Kumar, P. [1 ,2 ]
Kim, H. [4 ]
Tripathy, S. [4 ]
Watanabe, K. [5 ]
Taniguchi, T. [5 ]
Novoselov, K. S. [1 ,2 ,3 ]
Kotekar-Patil, D. [4 ,6 ]
机构
[1] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117544, Singapore
[2] Natl Univ Singapore, Integrat Sci & Engn Programme, Singapore 119077, Singapore
[3] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
[4] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
[5] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba 3050044, Japan
[6] Univ Arkansas, 731 West Dickson St, Fayetteville, AR 72701 USA
关键词
COULOMB-BLOCKADE; TRANSPORT;
D O I
10.1039/d3nr03844k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconducting transition metal dichalcogenides (TMDCs) are very promising materials for quantum dots and spin-qubit implementation. Reliable operation of spin qubits requires the knowledge of the Land & eacute; g-factor, which can be measured by exploiting the discrete energy spectrum on a quantum dot. However, the quantum dots realized in TMDCs are yet to reach the required control and quality for reliable measurement of excited state spectroscopy and the g-factor, particularly in atomically thin layers. Quantum dot sizes reported in TMDCs so far are not small enough to observe discrete energy levels on them. Here, we report on electron transport through discrete energy levels of quantum dots in a single layer MoS2 isolated from its environment using a dual gate geometry. The quantum dot energy levels are separated by a few (5-6) meV such that the ground state and the first excited state transitions are clearly visible, thanks to the low contact resistance of similar to 700 Omega and relatively low gate voltages. This well-resolved energy separation allowed us to accurately measure the ground state g-factor of similar to 5 in MoS2 quantum dots. We observed a spin-filling sequence in our quantum dots under a perpendicular magnetic field. Such a system offers an excellent testbed to measure the key parameters for evaluation and implementation of spin-valley qubits in TMDCs, thus accelerating the development of quantum systems in two-dimensional semiconducting TMDCs.
引用
收藏
页码:18203 / 18211
页数:9
相关论文
共 50 条
  • [21] Resolving the spin splitting in the conduction band of monolayer MoS2
    Marinov, Kolyo
    Avsar, Ahmet
    Watanabe, Kenji
    Taniguchi, Takashi
    Kis, Andras
    NATURE COMMUNICATIONS, 2017, 8
  • [22] Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis
    Tadi, Kiran Kumar
    Palve, Anil M.
    Pal, Shubhadeep
    Sudeep, P. M.
    Narayanan, Tharangattu N.
    NANOTECHNOLOGY, 2016, 27 (27)
  • [23] Resolving the spin splitting in the conduction band of monolayer MoS2
    Kolyo Marinov
    Ahmet Avsar
    Kenji Watanabe
    Takashi Taniguchi
    Andras Kis
    Nature Communications, 8
  • [24] Single-Layer MoS2 Electronics
    Lembke, Dominik
    Bertolazzi, Simone
    Kis, Andras
    ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (01) : 100 - 110
  • [25] Single-Layer MoS2 Phototransistors
    Yin, Zongyou
    Li, Hai
    Li, Hong
    Jiang, Lin
    Shi, Yumeng
    Sun, Yinghui
    Lu, Gang
    Zhang, Qing
    Chen, Xiaodong
    Zhang, Hua
    ACS NANO, 2012, 6 (01) : 74 - 80
  • [26] Bending response of single layer MoS2
    Xiong, Si
    Cao, Guoxin
    NANOTECHNOLOGY, 2016, 27 (10)
  • [27] Single-layer MoS2 transistors
    Radisavljevic, B.
    Radenovic, A.
    Brivio, J.
    Giacometti, V.
    Kis, A.
    NATURE NANOTECHNOLOGY, 2011, 6 (03) : 147 - 150
  • [28] Is Single Layer MoS2 Stable in the Air?
    Martincova, Jana
    Otyepka, Michal
    Lazar, Petr
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (53) : 13233 - 13239
  • [29] Single-layer MoS2 transistors
    Radisavljevic B.
    Radenovic A.
    Brivio J.
    Giacometti V.
    Kis A.
    Nature Nanotechnology, 2011, 6 (3) : 147 - 150
  • [30] Davydov splitting and polytypism in few-layer MoS2
    Na, Woongki
    Kim, Kangwon
    Lee, Jae-Ung
    Cheong, Hyeonsik
    2D MATERIALS, 2019, 6 (01)