Three-vertex prime graphs and reality of trees

被引:2
|
作者
Moura, Adriano [1 ,2 ]
Silva, Clayton [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Campinas, SP, Brazil
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum affine algebra; representation theory; simple prime modules; simple real modules; tensor product factorization; MINIMAL AFFINIZATIONS; QUANTUM; REPRESENTATIONS;
D O I
10.1080/00927872.2023.2196345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of prime simple modules for quantum affine algebras from the perspective of q-fatorization graphs. In this paper we establish several properties related to simple modules whose q-factorization graphs are afforded by trees. The two most important of them are proved for type A. The first completes the classification of the prime simple modules with three q-factors by giving a precise criterion for the primality of a 3-vertex line which is not totally ordered. Using a very special case of this criterion, we then show that a simple module whose q-factorization graph is afforded by an arbitrary tree is real. Indeed, the proof of the latter works for all types, provided the aforementioned special case is settled in general.
引用
收藏
页码:4054 / 4090
页数:37
相关论文
共 50 条
  • [21] Vertex-reinforced jump processes on trees and finite graphs
    Davis, B
    Volkov, S
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 128 (01) : 42 - 62
  • [22] Recognizing vertex intersection graphs of paths on bounded degree trees
    Alcon, L.
    Gutierrez, M.
    Mazzoleni, M. P.
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 70 - 77
  • [23] Vertex-reinforced jump processes on trees and finite graphs
    Burgess Davis
    Stanislav Volkov
    Probability Theory and Related Fields, 2004, 128 : 42 - 62
  • [24] Tetravalent Vertex-Transitive Graphs of Order Twice A Prime Square
    Cheng, Huiwen
    Ghasemi, Mohsen
    Qiao, Sha
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1763 - 1771
  • [25] Tetravalent Vertex-Transitive Graphs of Order Twice A Prime Square
    Huiwen Cheng
    Mohsen Ghasemi
    Sha Qiao
    Graphs and Combinatorics, 2016, 32 : 1763 - 1771
  • [26] Description of the Minimal Prime Extension Pairs of the 3-vertex Graphs
    Alrusaini, F. A. T. I. M. A. H.
    Alzohairi, M. O. H. A. M. M. A. D.
    Bouaziz, M. O. N. C. E. F.
    Boudabbous, Y. O. U. S. S. E. F.
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2022, 39 (2-4) : 291 - 340
  • [27] Frustrations and phase transitions in the three-vertex Potts model with next-nearest-neighbor interactions on a triangular lattice
    Murtazaev, A. K.
    Babaev, A. B.
    Magomedov, M. A.
    Kassan-Ogly, F. A.
    Proshkin, A. I.
    JETP LETTERS, 2014, 100 (04) : 242 - 246
  • [28] PRIME GRAPHS, PRIME-CONNECTED GRAPHS AND PRIME DIVISORS OF GRAPHS
    CHARTRAND, G
    SABA, F
    MYNHARDT, CM
    UTILITAS MATHEMATICA, 1994, 46 : 179 - 191
  • [29] Cyclic Vertex-Connectivity of Cayley Graphs Generated by Transposition Trees
    Cheng, Eddie
    Liptak, Laszlo
    Qiu, Ke
    Shen, Zhizhang
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 835 - 841
  • [30] Cyclic Vertex-Connectivity of Cayley Graphs Generated by Transposition Trees
    Eddie Cheng
    László Lipták
    Ke Qiu
    Zhizhang Shen
    Graphs and Combinatorics, 2013, 29 : 835 - 841