Prediction of acute organophosphate poisoning severity using machine learning techniques

被引:6
|
作者
Hosseini, Sayed Masoud [1 ]
Rahimi, Mitra [2 ]
Afrash, Mohammad Reza [3 ]
Ziaeefar, Pardis [4 ]
Yousefzadeh, Parsa [4 ]
Pashapour, Sanaz [5 ]
Evini, Peyman Erfan Talab [2 ]
Mostafazadeh, Babak [2 ]
Shadnia, Shahin [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Loghman Hakim Hosp, Toxicol Res Ctr, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Loghman Hakim Hosp, Toxicol Res Ctr, Excellence Ctr Clin Toxicol,Dept Clin Toxicol, Tehran, Iran
[3] Smart Univ Med Sci, Dept Artificial Intelligence, Tehran, Iran
[4] Shahid Beheshti Univ Med Sci, Sch Med, Tehran, Iran
[5] Islamic Azad Univ, Fac Pharm & Pharmaceut Sci, Dept Pharmacol & Toxicol, Tehran Med Sci, Tehran, Iran
关键词
Organophosphate Poisoning; Prognosis; Risk Prediction; Machine Learning; GLASGOW COMA SCALE; SCORING SYSTEMS; MORTALITY; PERFORMANCE; PHYSIOLOGY; MORBIDITY; SURVIVAL; RISK; ICU;
D O I
10.1016/j.tox.2023.153431
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Poisoning with organophosphate compounds is a significant public health risk, especially in developing countries. Considering the importance of early and accurate prediction of organophosphate poisoning prognosis, the aim of this study was to develop a machine learning-based prediction model to predict the severity of organophosphate poisoning. The data of patients with organophosphate poisoning were retrospectively extracted and split into training and test sets in a ratio of 70:30. The feature selection was done by least absolute shrinkage and selection operator method. Selected features were fed into five machine learning techniques, including Histogram Boosting Gradient, eXtreme Gradient Boosting, K-Nearest Neighborhood, Support Vector Machine (SVM) (kernel = linear), and Random Forest. The Scikit-learn library in Python programming language was used to implement the models. Finally, the performance of developed models was measured using ten-fold cross-validation methods and some evaluation criteria with 95 % confidence intervals. A total of 1237 patients were used to train and test the machine learning models. According to the criteria determining severe organophosphate poisoning, 732 patients were assigned to group 1 (patients with mild to moderate poisoning) and 505 patients were assigned to group 2 (patients with severe poisoning). With an AUC value of 0.907 (95 % CI 0.89-0.92), the model developed using XGBoost outperformed other models. Feature importance evaluation found that venous blood gas-pH, white blood cells, and plasma cholinesterase activity were the top three variables that contribute the most to the prediction performance of the prognosis in patients with organophosphate poisoning. XGBoost model yield an accuracy of 90.1 % (95 % CI 0.891-0.918), specificity of 91.4 % (95 % CI 0.90-0.92), a sensitivity of 89.5 % (95 % CI 0.87-0.91), F-measure of 91.2 % (95 % CI 0.90-0.921), and Kappa statistic of 91.2 % (95 % CI 0.90-0.92). The machine learning-based prediction models can accurately predict the severity of organophosphate poisoning. Based on feature selection techniques, the most important predictors of organophosphate poisoning were VBG-pH, white blood cell count, plasma cholinesterase activity, VBG-BE, and age. The best algorithm with the highest predictive performance was the XGBoost classifier.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Solar Radiation Prediction Using Machine Learning Techniques
    Caycedo Villalobos, Luis Alejandro
    Cortazar Forero, Richard Alexander
    Cano Perdomo, Pedro Miguel
    Gonzalez Veloza, Jose John Fredy
    APPLIED INFORMATICS (ICAI 2021), 2021, 1455 : 68 - 81
  • [32] Photovoltaic Energy Prediction Using Machine Learning Techniques
    Surribas Sayago, Gonzalo
    David Fernandez-Rodriguez, Jose
    Dominguez, Enrique
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 577 - 587
  • [33] Airfare Prices Prediction Using Machine Learning Techniques
    Tziridis, K.
    Kalampokas, Th.
    Papakostas, G. A.
    Diamantaras, K. I.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1036 - 1039
  • [34] Prediction of diabetic retinopathy using machine learning techniques
    Jebaseeli, T. Jemima
    Durai, C. Anand Deva
    Alelyani, Salem
    Alsaqer, Mohammed Saleh
    JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (2B): : 27 - 37
  • [35] Premature Birth Prediction Using Machine Learning Techniques
    Meem, Kazi Rafat Haa
    Islam, Sadia
    Adnan, Ahmed Omar Salim
    Momen, Sifat
    ARTIFICIAL INTELLIGENCE TRENDS IN SYSTEMS, VOL 2, 2022, 502 : 270 - 284
  • [36] Prediction of Employee Performance using Machine Learning Techniques
    Lather, Anu Singh
    Malhotra, Ruchika
    Saloni, Priya
    Singh, Prabhjot
    Mittal, Sarthak
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [37] Diabetes prediction model using machine learning techniques
    Modak, Sandip Kumar Singh
    Jha, Vijay Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38523 - 38549
  • [38] Neonatal Disease Prediction Using Machine Learning Techniques
    Robi Y.G.
    Sitote T.M.
    Journal of Healthcare Engineering, 2023, 2023
  • [39] Earthquake Prediction using Hybrid Machine Learning Techniques
    Salam, Mustafa Abdul
    Ibrahim, Lobna
    Abdelminaam, Diaa Salama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 654 - 665
  • [40] Chip Performance Prediction Using Machine Learning Techniques
    Su, Min-Yan
    Lin, Wei-Chen
    Kuo, Yen-Ting
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    Hsueh, Sung S-Y
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,