Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite

被引:9
|
作者
Tang, Ziwei [1 ,2 ,3 ]
Dai, Zhongran [4 ]
Gong, Mi [1 ,2 ,3 ]
Chen, Hong [1 ,2 ,3 ]
Zhou, Xiayu [1 ,2 ,3 ]
Wang, Yating [1 ,2 ,3 ]
Jiang, Cong [1 ,2 ,3 ]
Yu, Wanying [1 ,2 ,3 ]
Li, Le [1 ,2 ,3 ,4 ]
机构
[1] Univ South China, Coll Publ Hlth, Hengyang Med Sch, Hengyang 421001, Hunan, Peoples R China
[2] Univ South China, Hengyang Key Lab Comprehens Prevent & Control Uran, Hengyang 421001, Hunan, Peoples R China
[3] Univ South China, Hunan Prov Key Lab Typ Environm Pollut & Hlth Haza, Hengyang 421001, Hunan, Peoples R China
[4] Univ South China, Hunan Prov Key Lab Green Dev Technol Extremely Low, Hengyang 421001, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Uranium; Biochar; nZVI; Adsorption; Reduction; ADSORPTION;
D O I
10.1007/s11356-022-25124-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uranium (U) is an important strategic resource as well as a heavy metal element with both chemical and radiotoxicity. At present, the rapid and efficient removal of uranium from wastewater remains a huge challenge for environmental protection and ecological security. In this paper, phosphate-modified biochar supporting nano zero-valent iron (PBC/nZVI) was triumphantly prepared and fully characterized. The introduction of polyphosphate can greatly increase the specific surface area of biochar pores, and then the zero-valent iron can be evenly distributed on the surface of material, thus leading to excellent removal performance of the PBC/nZVI for U(VI). The theoretical maximum U(VI) removal capacity of PBC/nZVI was up to 967.53 mg/g at pH 5. The results of adsorption kinetics, isotherm, and thermodynamics showed that the adsorption of uranium by PBC/nZVI was a monolayer physical adsorption and endothermic reaction. And the PBC/nZVI has favorable selectivity toward uranium against the interference of coexisting metal ions. Further mechanism studies show that the excellent uranium removal performance of PBC/nZVI is mainly attributed to the synergistic effect of physical adsorption and chemical reduction. This work proves that the PBC/nZVI has a wide application prospect in the field of uranium wastewater treatment.
引用
收藏
页码:40478 / 40489
页数:12
相关论文
共 50 条
  • [21] Aqueous phosphate removal using nanoscale zero-valent iron
    Talal Almeelbi
    Achintya Bezbaruah
    Journal of Nanoparticle Research, 2012, 14
  • [22] Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron
    Jiali Xu
    Yilian Li
    Chen Jing
    Hucheng Zhang
    Yu Ning
    Journal of Radioanalytical and Nuclear Chemistry, 2014, 299 : 329 - 336
  • [23] Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron
    Xu, Jiali
    Li, Yilian
    Jing, Chen
    Zhang, Hucheng
    Ning, Yu
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2014, 299 (01) : 329 - 336
  • [24] Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water
    Zhang, Qi
    Wang, Yangyang
    Wang, Zheng
    Zhang, Zhijie
    Wang, Xiaodong
    Yang, Zhenglong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 852 (852)
  • [25] Removal of Cr(VI) from aqueous solution using organically modified attapulgite-supported nanoscale zero-valent iron
    Xu, Hai-Yu
    Zhang, Ming-Qing
    Chen, Yi-Yu
    Zhongguo Huanjing Kexue/China Environmental Science, 2019, 39 (12): : 5079 - 5084
  • [26] Removal of uranium(VI) from aqueous solution by Mg(OH)2-coated nanoscale zero-valent iron: Reactivity and mechanism
    Chen, Chen
    Zhang, Xiaowen
    Jiang, Tianjiao
    Li, Mi
    Peng, Ying
    Liu, Xudong
    Ye, Jian
    Hua, Yilong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [27] Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron
    Yang, Jingjing
    Ma, Tianxing
    Li, Xiaoqin
    Tu, Jingwei
    Dang, Zhi
    Yang, Chen
    JOURNAL OF ENVIRONMENTAL QUALITY, 2018, 47 (05) : 1196 - 1204
  • [28] Environmentally friendly zero-valent iron-modified biochar beads for high-performance antimonite removal from aqueous solution
    Wu, Ai
    Jia, Xiuxiu
    Zhang, Kai
    Shao, Jiahui
    Mao, Jingtao
    Yang, Zhihua
    Duan, Zhengda
    Chen, Wen-Tong
    Chang, Fengqin
    Wang, Shixiong
    Hu, Guangzhi
    JOURNAL OF CLEANER PRODUCTION, 2024, 460
  • [29] Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles
    Xia, Siqing
    Gu, Zaoli
    Zhang, Zhiqiang
    Zhang, Jiao
    Hermanowicz, Slawomir W.
    CHEMICAL ENGINEERING JOURNAL, 2014, 257 : 98 - 104
  • [30] Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite
    Kim, Seol Ah
    Kamala-Kannan, Seralathan
    Lee, Kui-Jae
    Park, Yool-Jin
    Shea, Patrick J.
    Lee, Wang-Hyu
    Kim, Hyung-Moo
    Oh, Byung-Taek
    CHEMICAL ENGINEERING JOURNAL, 2013, 217 : 54 - 60