Temporal-Spatial Quantum Graph Convolutional Neural Network Based on Schrodinger Approach for Traffic Congestion Prediction

被引:73
|
作者
Qu, Zhiguo [1 ,2 ,3 ]
Liu, Xinzhu [4 ]
Zheng, Min [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Equipment Technol & Engn Res Ctr Digital Forens, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Sci, Nanjing 210044, Peoples R China
[3] Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[5] Hubei Univ Sci & Technol, Sch Econ & Management, Xianning 437099, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural networks; Computational modeling; Roads; Convolutional neural networks; Closed-form solutions; Machine learning; Data models; Intelligent transportation system; traffic congestion prediction; Schrodinger approach; quantum graph convolutional neural network;
D O I
10.1109/TITS.2022.3203791
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic congestion prediction (TCP) plays a vital role in intelligent transportation systems due to its importance of traffic management. Methods for TCP have emerged greatly with the development of machine learning. However, TCP is always a challenging work due to the dynamic characteristics of traffic data and the complex structure of traffic network. This paper presents a new quantum algorithm that can capture temporal and spatial features of traffic data simultaneously for TCP. The algorithm consists of the following steps. First, we give a closed-form solution in the Schrodinger approach theoretically to analyze this TCP problem in time dimension. Then we can get the temporal features from the solution. At last, we construct a quantum graph convolutional network and apply temporal features into it. Thus, the temporal-spatial quantum graph convolutional neural network is proposed. The feasibility of this method is proved through experiments on the simulation platform. The experimental results show the average error rate is 0.21 and can resist perturbation effectively.
引用
收藏
页码:8677 / 8686
页数:10
相关论文
共 50 条
  • [31] Traffic Prediction and Congestion Control Based on Directed Graph Convolution Neural Network
    Zeng Y.-C.
    Shao M.-H.
    Sun L.-J.
    Lu C.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2021, 34 (12): : 239 - 248
  • [32] An Optimized Temporal-Spatial Gated Graph Convolution Network for Traffic Forecasting
    Guo, Kan
    Hu, Yongli
    Sun, Yanfeng
    Qian, Zhen
    Gao, Junbin
    Yin, Baocai
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (01) : 153 - 162
  • [33] An Urban Traffic Knowledge Graph-Driven Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction
    Yang, Chengbiao
    Qi, Guilin
    PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS, IJCKG 2022, 2022, : 110 - 114
  • [34] Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model
    Li, Qin
    Xu, Pai
    Yang, Xuan
    Wu, Yuankai
    He, Hongwen
    He, Deqiang
    IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (12) : 20767 - 20778
  • [35] Network Traffic Prediction Method Based on Multi-Channel Spatial-Temporal Graph Convolutional Networks
    He, Yechen
    Yang, Yang
    Zhao, Binnan
    Gao, Zhipeng
    Rui, Lanlan
    2022 IEEE 14TH INTERNATIONAL CONFERENCE ON ADVANCED INFOCOMM TECHNOLOGY (ICAIT 2022), 2022, : 25 - 30
  • [36] Rural Distributed Photovoltaic Spatial Generation Forecasting Based on Graph Convolutional Neural Networks with Temporal-Spatial Correlation
    Zhou, Milu
    Wang, Shuai
    Yang, Xiaoyan
    Lecture Notes in Electrical Engineering, 1333 LNEE : 57 - 65
  • [37] A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction
    Li, Yanbing
    Zhao, Wei
    Fan, Huilong
    MATHEMATICS, 2022, 10 (10)
  • [38] An Attention and Wavelet Based Spatial-Temporal Graph Neural Network for Traffic Flow and Speed Prediction
    Zhao, Shihao
    Xing, Shuli
    Mao, Guojun
    MATHEMATICS, 2022, 10 (19)
  • [39] Spatial-Temporal Graph Neural Network for Traffic Flow Prediction Based on Information Enhanced Transmission
    Ni Q.
    Peng W.
    Zhang Z.
    Zhai Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (02): : 282 - 293
  • [40] GraphSANet: A Graph Neural Network and Self Attention Based Approach for Spatial Temporal Prediction in Sensor Network
    Li, He
    Zhang, Shiyu
    Su, Liangcai
    Huang, Hongjie
    Jin, Duo
    Li, Xuejiao
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5756 - 5758