Temporal-Spatial Quantum Graph Convolutional Neural Network Based on Schrodinger Approach for Traffic Congestion Prediction

被引:73
|
作者
Qu, Zhiguo [1 ,2 ,3 ]
Liu, Xinzhu [4 ]
Zheng, Min [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Equipment Technol & Engn Res Ctr Digital Forens, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp & Sci, Nanjing 210044, Peoples R China
[3] Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[5] Hubei Univ Sci & Technol, Sch Econ & Management, Xianning 437099, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural networks; Computational modeling; Roads; Convolutional neural networks; Closed-form solutions; Machine learning; Data models; Intelligent transportation system; traffic congestion prediction; Schrodinger approach; quantum graph convolutional neural network;
D O I
10.1109/TITS.2022.3203791
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic congestion prediction (TCP) plays a vital role in intelligent transportation systems due to its importance of traffic management. Methods for TCP have emerged greatly with the development of machine learning. However, TCP is always a challenging work due to the dynamic characteristics of traffic data and the complex structure of traffic network. This paper presents a new quantum algorithm that can capture temporal and spatial features of traffic data simultaneously for TCP. The algorithm consists of the following steps. First, we give a closed-form solution in the Schrodinger approach theoretically to analyze this TCP problem in time dimension. Then we can get the temporal features from the solution. At last, we construct a quantum graph convolutional network and apply temporal features into it. Thus, the temporal-spatial quantum graph convolutional neural network is proposed. The feasibility of this method is proved through experiments on the simulation platform. The experimental results show the average error rate is 0.21 and can resist perturbation effectively.
引用
收藏
页码:8677 / 8686
页数:10
相关论文
共 50 条
  • [1] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [2] Traffic Flow Prediction Based on Information Aggregation and Comprehensive Temporal-Spatial Synchronous Graph Neural Network
    Cheng, Xiaohui
    He, Yuhao
    Zhang, Panfeng
    Kang, Yanping
    IEEE ACCESS, 2023, 11 : 47469 - 47479
  • [3] Speech Emotion Recognition Based on Temporal-Spatial Learnable Graph Convolutional Neural Network
    Yan, Jingjie
    Li, Haihua
    Xu, Fengfeng
    Zhou, Xiaoyang
    Liu, Ying
    Yang, Yuan
    ELECTRONICS, 2024, 13 (11)
  • [4] Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction
    Jing, Zihao
    arXiv,
  • [5] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [6] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [7] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [8] Capturing spatial-temporal correlations with Attention based Graph Convolutional Network for network traffic prediction
    Guo, Yingya
    Peng, Yufei
    Hao, Run
    Tang, Xiang
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 220
  • [9] Traffic Matrix Prediction in SDN based on Spatial-Temporal Residual Graph Convolutional Network
    Wang, Xintong
    Sun, Yibo
    Wang, Xuan
    Wang, Enliang
    Sun, Zhixin
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3382 - 3387
  • [10] GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Liu, Tao
    Jiang, Aimin
    Zhou, Jia
    Li, Min
    Kwan, Hon Keung
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 11210 - 11224