Mitigation of earthquake-induced liquefaction and lateral spread deformation by applying ground granulated blast furnace slag

被引:1
|
作者
Zhang, Xiaoyu [1 ]
Wang, Shengkun [1 ]
Su, Lei [2 ]
Zhu, Haibo [1 ]
Liu, Hai [1 ]
Liu, Chao [1 ]
Cui, Jie [1 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266033, Peoples R China
基金
中国国家自然科学基金;
关键词
Ground granulated blast furnace slag; Soil improvement; Liquefaction mitigation; Cyclic triaxial test; Numerical simulation; CYCLIC MOBILITY; SAND; RESISTANCE; BENTONITE; VELOCITY; SOILS; PILE;
D O I
10.1016/j.soildyn.2024.108493
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In recent years, the rapid growth of steel production has accelerated the generation of ground granulated blast furnace slag (GGBFS). To reduce the environmental problems caused by the excessive accumulation of GGBFS, this study examined the potential of using GGBFS for soil improvement to mitigate earthquake-induced soil liquefaction. Twenty-nine stress-controlled undrained cyclic triaxial tests were conducted on saturated sands reinforced with and without GGBFS. The influence of the GGBFS content, cyclic stress ratio, and effective confining pressure on the liquefaction behavior of improved and unimproved sands was investigated. The experimental results showed that as the GGBFS content increased, the rate of improvement in liquefaction resistance increased, and the largest liquefaction resistance improvement rate of the sample with 17.5 % GGBFS content reached 1060 %. Besides, the reinforcement effect of GGBFS applied to mildly sloping liquefiable ground was also studied by numerical modeling method. The numerical simulation results further indicated that the liquefaction-induced lateral spread deformations can indeed be reduced due to the presence of GGBFS.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] INVESTIGATION ON THE EFFECTIVENESS OF GROUND GRANULATED BLAST FURNACE SLAG ADDITIVE IN CONCRETE
    Vollpracht, A.
    Nebel, H.
    Brameshuber, W.
    INTERNATIONAL RILEM CONFERENCE ON MATERIAL SCIENCE (MATSCI), VOL III, 2010, 77 : 199 - 209
  • [22] Hydration of alkali-activated ground granulated blast furnace slag
    S. Song
    D. Sohn
    H. M. Jennings
    T. O. Mason
    Journal of Materials Science, 2000, 35 : 249 - 257
  • [23] Experimental study of replacement of cement with ground granulated blast furnace slag
    Naresh, B.
    Saravanan, M.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 3493 - 3496
  • [24] Ground granulated blast-furnace and corex slag - comparative study
    Alaud, Salhin
    ADVANCES IN ENGINEERING MATERIALS, STRUCTURES AND SYSTEMS: INNOVATIONS, MECHANICS AND APPLICATIONS, 2019, : 1636 - 1640
  • [25] Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability
    Aghaeipour, Arash
    Madhkhan, Morteza
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 141 : 533 - 541
  • [26] Fine ground granulated blast furnace slag for saving quantity of binder
    Kazanskaya, Liliya
    Privalov, Nicolay
    Privalova, Svetlana
    INTERNATIONAL SCIENCE CONFERENCE SPBWOSCE-2018: BUSINESS TECHNOLOGIES FOR SUSTAINABLE URBAN DEVELOPMENT, 2019, 110
  • [27] Microstructure and Durability of Ground Granulated Blast Furnace Slag Cement Mortars
    Saafan, Mohammed A.
    Etman, Zeinab A.
    El Lakany, Doaa M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2021, 45 (03) : 1457 - 1465
  • [28] Modification of recycled cement with phosphogypsum and ground granulated blast furnace slag
    Xu, Lei
    Wang, Junjie
    Hu, Xiaochuan
    Ran, Bo
    Huang, Rong
    Tang, Huiyu
    Li, Zhe
    Li, Bowei
    Wu, Shenghua
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 426
  • [29] Structural Strategy for Risk Mitigation of Bridges Subjected to Earthquake-Induced Ground Deformation
    Nishida, Hideaki
    Ooenoki, Ken
    Miyahara, Fumi
    Hoshikuma, Jun-ichi
    NATURAL GEO-DISASTERS AND RESILIENCY, CREST 2023, 2024, 445 : 359 - 370
  • [30] Basic property and the method of effective use on Portland blast-furnace slag cement and ground granulated blast furnace slag
    Nobata, Kenji
    Ueki, Yasutomo
    Nippon Steel Technical Report, 2002, (86): : 44 - 47