Numerical investigation on effect of different projectile nose shapes on ballistic impact of additively manufactured AlSi10Mg alloy

被引:2
|
作者
Naik, Mahesh [1 ]
Pranay, V. [1 ]
Thakur, D. G. [1 ]
Chandel, Sunil [1 ]
Salunkhe, Sachin [2 ,3 ]
Pagac, Marek [4 ]
Nasr, Emad S. Abouel [5 ]
机构
[1] Minist Def, Dept Mech Engn, Def Inst Adv Technol DU, Pune, Maharashtra, India
[2] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biosci, Chennai, India
[3] Gazi Univ, Dept Mech Engn, Fac Engn, Ankara, Turkiye
[4] Fac Mech Engn Assembly & Engn Technol, Dept Machining, Ostrava, Czech Republic
[5] King Saud Univ, Coll Engn, Dept Ind Engn, Riyadh, Saudi Arabia
关键词
AlSi10Mg alloy; additive manufacturing; impact; ballistic limit; FEA; MM DIAMETER PROJECTILES; THICK STEEL PLATES; ALUMINUM PLATES; PART II; PERFORATION; BEHAVIOR; BLUNT; PENETRATION; STRENGTH; FLAT;
D O I
10.3389/fmats.2024.1330597
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the last few years, due to the superior mechanical qualities of Additive Manufacturing (AM) AlSi10Mg alloy to those of traditional casting process AlSi10Mg alloys, the application of AM technology has significantly increased. The ballistic impact research has a wide range of uses, notably in the mining, construction, spacecraft and defence sectors. This work focuses on analyzing the behavior of different projectile nose shapes on the AlSi10Mg alloy fabricated by AM. There are several projectile nose forms to consider, including blunt, hemispherical, conical, and ogive shapes. The impact of various projectile shapes on the ballistic limit of the additively created AlSi10Mg alloy is carefully examined in this study. All numerical simulations were carried out using LS-DYNA software, and the Johnson-Cook material and damage model were considered to assess the ballistic resistance behavior. The ballistic limit for various projectile shapes is computed using the Jonas-Lambert model, which describes the connection between residual velocity and starting projectile velocity. The results showed that, the ogive-shaped Projectile offers the highest ballistic limit, and the blunt projectile shows the lowest ballistic limit for a 5 mm thin target plate. The ballistic impact phenomenon showed plugging failure for the blunt nose projectile, the formation of plug and small fragments were observed in the case of hemispherical nose projectile, fragmenting failure is observed with radial necking in the case of conical nose projectile and petals are formed at the impacted zone in ogive nose shape projectile. Moreover, the ballistic limit of AM AlSi10Mg alloy was slightly higher compared to the ballistic limit of the die-cast AlSi10Mg alloy for the 7.62 mm AP bullet (core). Therefore, AM AlSi10Mg alloy may have equal or good ballistic properties compared to die-cast AlSi10Mg alloy.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Effect of Thermal Exposure Simulating Vapor Deposition on the Impact Behavior of Additively Manufactured AlSi10Mg Alloy
    Lattanzi, L.
    Merlin, M.
    Fortini, A.
    Morri, A.
    Garagnani, G. L.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (04) : 2859 - 2869
  • [12] Microstructure and mechanical properties of an additively manufactured AlSi10Mg based alloy
    Atar, Bugrahan
    Uyuklu, Eren
    Yayla, Pasa
    MATERIALS TESTING, 2023, 65 (06) : 874 - 885
  • [13] The effect of thermal history on the additively manufactured AlSi10Mg alloy response to ion irradiation
    Ungarish, Ziv
    Aizenshtein, Michael
    Woller, Kevin
    Short, Michael P.
    Hayun, Shmuel
    JOURNAL OF NUCLEAR MATERIALS, 2024, 588
  • [14] Effect of annealing treatment on microstructure and mechanical behaviour of additively manufactured AlSi10Mg alloy
    Gite, Ravindra Eknath
    Wakchaure, Vishnu D.
    Nagare, Prashant N.
    PROGRESS IN ADDITIVE MANUFACTURING, 2024,
  • [15] Shock compression response of additively manufactured AlSi10Mg
    Specht, Paul E.
    Brown, Nathan P.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (24)
  • [16] Fracture prediction of additively manufactured AlSi10Mg materials
    Irmak, E. F. Akbulut
    Troester, T.
    1ST INTERNATIONAL WORKSHOP ON PLASTICITY, DAMAGE AND FRACTURE OF ENGINEERING MATERIALS (IWPDF 2019), 2019, 21 : 190 - 197
  • [17] Precipitate formation in cerium-modified additively manufactured AlSi10Mg alloy
    Yakubov, Vladislav
    He, Peidong
    Kruzic, Jamie J.
    Li, Xiaopeng
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2023, 21 (04) : 1300 - 1310
  • [18] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    Ben-Artzy, A.
    Hadad, G.
    Bussiba, A.
    Nahmany, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (02) : 201 - 212
  • [19] Effect of the Surface Finish on the Cyclic Behavior of Additively Manufactured AlSi10Mg
    Scurria, Matilde
    Moeller, Benjamin
    Wagener, Rainer
    Melz, Tobias
    TMS 2019 148TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2019, : 383 - 394
  • [20] Short-Crack Growth Behavior in Additively Manufactured AlSi10Mg Alloy
    Robert K. Rhein
    Qianying Shi
    Srinivasan Arjun Tekalur
    J. Wayne Jones
    Jason W. Carroll
    Journal of Materials Engineering and Performance, 2021, 30 : 5392 - 5398