Nickel sulfide nanowire-filled carbon nanotubes as electrocatalysts for efficient hydrogen evolution reaction

被引:5
|
作者
Gotame, Ram Chandra [1 ]
Poudel, Yuba Raj [1 ]
Dahal, Biplav [1 ]
Thapa, Arun [1 ]
Dares, Christopher [2 ]
Li, Wenzhi [1 ]
机构
[1] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
[2] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA
基金
美国国家科学基金会;
关键词
Hydrogen evolution reaction (HER); Electrocatalyst; Overpotential; Nickel sulfide; Filled carbon nanotubes; NI FOAM; ALKALINE; CATALYSIS; KINETICS; PROGRESS; FILM;
D O I
10.1016/j.ijhydene.2023.10.171
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing a cost-effective, efficient, and eco-friendly electrocatalyst made from non-noble materials for the hydrogen evolution reaction (HER) is challenging. This research paper presents an application of the nickel sulfide (Ni3S2) nanowires-filled multiwalled carbon nanotubes (CNTs) synthesized on carbon cloth (CC) (Ni3S2@CNTs/CC) as an efficient HER electrocatalyst. The performance of Ni3S2@CNTs/CC as a working elec-trode was examined for its hydrogen evolution ability. In a 1.0 M KOH solution, Ni3S2@CNTs/CC requires cathodic overpotentials of 381 mV and 549 mV to generate current densities of 10 mA/cm2 and 100 mA/cm2, respectively. Electrochemical impedance measurements showed a low charge transfer resistance value of 3.3 omega for Ni3S2@CNTs/CC.The evaluation of the electrochemically active surface area revealed that Ni3S2@CNTs/CC has more electro-chemical active sites and a higher roughness factor than pristine CC. Most importantly, the current density of Ni3S2@CNTs/CC did not significantly degrade after 3000 CV cycles and 12 h of constant HER. These findings suggest that Ni3S2@CNTs/CC is a cost-effective, highly functional, and stable electrode material for HER in a strongly alkaline medium.
引用
收藏
页码:671 / 680
页数:10
相关论文
共 50 条
  • [21] Direct growth of nickel-doped cobalt phosphide nanowire cluster on carbon cloth for efficient hydrogen evolution reaction
    Du, Bing
    Zhao, Jinxiu
    Ren, Xiang
    Sun, Xu
    Wei, Qin
    Wu, Dan
    ELECTROCHEMISTRY COMMUNICATIONS, 2021, 127
  • [22] Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction
    Wang, Changhao
    Li, Yahao
    Gu, Changdong
    Zhang, Lingjie
    Wang, Xiuli
    Tu, Jiangping
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [23] Recent advances in electrocatalysts for efficient hydrogen evolution reaction
    He, Huan
    Mai, Jin-Hua
    Hu, Kun-Song
    Yu, Han-Qing
    Zhang, Zhen-Guo
    Zhan, Feng
    Liu, Xin-Hua
    RARE METALS, 2024,
  • [24] Nickel foam derived nitrogen doped nickel sulfide nanowires as an efficient electrocatalyst for the hydrogen evolution reaction
    Yu, Furong
    Yao, Huiling
    Wang, Bo
    Zhang, Kewei
    Zhang, Zhengyuan
    Xie, Li
    Hao, Jinhui
    Mao, Baodong
    Shen, Hao
    Shi, Weidong
    DALTON TRANSACTIONS, 2018, 47 (29) : 9871 - 9876
  • [25] Functionalized Carbon Nanotubes for Highly Active and Metal-Free Electrocatalysts in Hydrogen Evolution Reaction
    Tianhao Li
    Daomei Tang
    Zehua Cui
    Bo Cai
    Dalin Li
    Qianyuan Chen
    ChangMing Li
    Electrocatalysis, 2018, 9 : 573 - 581
  • [26] Functionalized Carbon Nanotubes for Highly Active and Metal-Free Electrocatalysts in Hydrogen Evolution Reaction
    Li, Tianhao
    Tang, Daomei
    Cui, Zehua
    Cai, Bo
    Li, Dalin
    Chen, Qianyuan
    Li, ChangMing
    ELECTROCATALYSIS, 2018, 9 (05) : 573 - 581
  • [27] Polyoxometalate-decorated graphene nanosheets and carbon nanotubes, powerful electrocatalysts for hydrogen evolution reaction
    Ensafi, Ali A.
    Heydari-Soureshjani, E.
    Jafari-Asl, M.
    Rezaei, B.
    CARBON, 2016, 99 : 398 - 406
  • [28] Nanostructured nickel and cobalt phosphides as electrocatalysts for the hydrogen evolution reaction
    Popczun, Eric
    Schaak, Raymond
    Read, Carlos
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [29] Ultrathin carbon coated CoO nanosheet arrays as efficient electrocatalysts for the hydrogen evolution reaction
    Jin, Weiyang
    Guo, Xiaoliang
    Zhang, Jun
    Zheng, Lekai
    Liu, Fang
    Hu, Yongchuan
    Mao, Jing
    Liu, Hui
    Xue, Yanming
    Tang, Chengchun
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (24) : 6957 - 6964
  • [30] Applications of Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction
    Huo, Liuxiang
    Jin, Chunqiao
    Jiang, Kai
    Bao, Qinye
    Hu, Zhigao
    Chu, Junhao
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (04):