Critical Clearing Time Prediction for Power Transmission Using an Adaptive Neuro-Fuzzy Inference System

被引:2
|
作者
Jiriwibhakorn, Somchat [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang KMITL, Sch Engn, Bangkok 10520, Thailand
关键词
Power system stability; Load modeling; Mathematical models; Transient analysis; Power system dynamics; Artificial neural networks; Turbines; Critical clearing time; automatic voltage regulator model; governor model; an adaptive neuro-fuzzy inference system; an artificial neural network; TRANSIENT STABILITY ASSESSMENT; QUALITY; IMPROVE;
D O I
10.1109/ACCESS.2023.3341968
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive neuro-fuzzy inference system (ANFIS) is a hybrid algorithm composed of fuzzy logic and an artificial neural network. It takes advantage of fuzzy logic and artificial neural networks to solve complex problems. For power transmission, several dynamic parameters are ignored for conventional transient stability assessment due to the complexity of the equations, and due to the long computational time required. Certainly, it is very difficult to do the real-time assessment of large power systems by considering dynamic impacts in detail. In this paper, an approach is required to increase the accuracy of results. Herein, a method, namely ANFIS, was found to overcome the limitations. All significant effects of dynamics can be taken into account; not only the machine model but also the turbine governor model, automatic voltage regulator (AVR) model, and load characteristic model are carefully considered. In addition, the model used for each generator unit is varied to achieve real conditions. The ANFIS output is the critical clearing time (CCT). CCT values are very important to be correctly predicted for the stability of power systems after clearing the faults. When the faults are cleared by opening the circuit breakers within the CCT values, the power systems are still stable. If the faults are cleared after the CCT values, the systems become unstable. The modified IEEE 9-bus and IEEE 39-bus systems are applied in the implementation of this study. The locations of faults and the levels of loads (except the power system topology changes) are varied for each simulation. The results from the ANFIS application indicate that ANFIS (considering the dynamic effects of the machine models, AVR system, turbine governors, and load characteristics) can predict CCT values with high accuracy. Moreover, when ANFIS results are compared to the artificial neural network (ANN) results, which are generally used, it can be seen that ANFIS results are better and take a lower time for training and testing processes than ANN. ANFIS can be adapted, improved, and implemented in real practice.
引用
收藏
页码:142100 / 142110
页数:11
相关论文
共 50 条
  • [1] Online critical clearing time estimation using an adaptive neuro-fuzzy inference system (ANFIS)
    Phootrakornchai, Witsawa
    Jiriwibhakorn, Somchat
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 73 : 170 - 181
  • [2] Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    Zounemat-Kermani, Mohammad
    Teshnehlab, Mohammad
    APPLIED SOFT COMPUTING, 2008, 8 (02) : 928 - 936
  • [3] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [4] Adaptive Multidimensional Neuro-Fuzzy Inference System for Time Series Prediction
    Velasquez, J. D.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (08) : 2694 - 2699
  • [5] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    BATTERIES-BASEL, 2024, 10 (03):
  • [6] Protein structure prediction using an adaptive neuro-fuzzy inference system
    Wang, YX
    Wang, ZH
    Li, XM
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1625 - 1628
  • [7] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [8] Prediction of the level of air pollution using adaptive neuro-fuzzy inference system
    Suganya, S.
    Meyyappan, T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37131 - 37150
  • [9] Swelling Prediction in Compacted Soils Using Adaptive Neuro-Fuzzy Inference System
    Jokar, Mehdi Hashemi
    Mirassi, Sohrab
    Mahboubi, Meisam
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2023, 17 (01) : 97 - 106
  • [10] Prediction of student academic performance by using an adaptive neuro-fuzzy inference system
    Sevindik, Tuncay
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART B-SOCIAL AND EDUCATIONAL STUDIES, 2011, 3 (04): : 635 - 646