DMT-Net: Deep Multiple Networks for Low-Light Image Enhancement Based on Retinex Model

被引:12
|
作者
Duong, Minh-Thien [1 ]
Lee, Seongsoo [2 ]
Hong, Min-Cheol [3 ]
机构
[1] Soongsil Univ, Dept Informat & Telecommun Engn, Seoul 06978, South Korea
[2] Soongsil Univ, Dept Intelligent Semicond, Seoul 06978, South Korea
[3] Soongsil Univ, Sch Elect Engn, Seoul 06978, South Korea
关键词
Deep multiple networks; low-light image enhancement; Retinex model; undesirable degradation; YCbCr color space; ADAPTIVE HISTOGRAM EQUALIZATION; CONTRAST ENHANCEMENT; QUALITY ASSESSMENT; VISIBILITY;
D O I
10.1109/ACCESS.2023.3336411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images captured under low-light conditions are typically prone to undesirable visual phenomena, particularly color distortion and additive noise, that impede the aesthetics and performance of high-level vision tasks. Therefore, developing an enhancement method is necessary to obtain visually pleasing images. This paper proposes deep multiple networks for low-light image enhancement based on the Retinex model (defined as DMT-Net), wherein each network is configured to perform its own role in the YCbCr color space. More specifically, Decoupled-Net is presented to decouple the luminance channel into reflectance and illumination components accurately using the Retinex model. Denoising-Net is connected to Decoupled-Net to eradicate additive noise in the reflectance component. Boosting-Net enhances the illumination component and reduces halo artifacts. In addition, we propose Chrominance-Net to mitigate the distortion of the Cb and Cr channels. Our study also focuses on having a suitable norm order for the loss function based on kurtosis characteristics, such that each network is properly trained to minimize the residual in the training process. Finally, the experimental results prove that our proposed method outperforms numerous other cutting-edge methods in both qualitative and quantitative terms.
引用
收藏
页码:132147 / 132161
页数:15
相关论文
共 50 条
  • [21] Low-Light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Yu, Soohwan
    Moon, Byeongho
    Ko, Seungyong
    Paik, Joonki
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2017, 63 (02) : 178 - 184
  • [22] Low-light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Moon, Byeongho
    Ko, Seungyong
    Yu, Soohwan
    Paik, Joonki
    2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2017,
  • [23] Low-light image enhancement via deep Retinex decomposition and bilateral learning
    Lv, Xiaoqian
    Sun, Yujing
    Zhang, Jun
    Jiang, Feng
    Zhang, Shengping
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [24] Low-Light Mine Image Enhancement Algorithm Based on Improved Retinex
    Tian, Feng
    Wang, Mengjiao
    Liu, Xiaopei
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [25] Retinex low-light image enhancement network based on attention mechanism
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4235 - 4255
  • [26] Optimization algorithm for low-light image enhancement based on Retinex theory
    Yang, Jie
    Wang, Jun
    Dong, LinLu
    Chen, ShuYuan
    Wu, Hao
    Zhong, YaWen
    IET IMAGE PROCESSING, 2023, 17 (02) : 505 - 517
  • [27] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)
  • [28] Retinex-Based Multiphase Algorithm for Low-Light Image Enhancement
    Al-Hashim, Mohammad Abid
    Al-Ameen, Zohair
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 733 - 743
  • [29] Retinex low-light image enhancement network based on attention mechanism
    Xinyu Chen
    Jinjiang Li
    Zhen Hua
    Multimedia Tools and Applications, 2023, 82 : 4235 - 4255
  • [30] A Retinex-based network for image enhancement in low-light environments
    Wu, Ji
    Ding, Bing
    Zhang, Beining
    Ding, Jie
    PLOS ONE, 2024, 19 (05):