The Effect of Histogram Analysis of DCE-MRI Parameters on Differentiating Renal Tumors

被引:2
|
作者
Li, Hao [1 ]
Zhao, Sheng [1 ]
Fan, Hai Y. [1 ]
Li, Yan [1 ]
Wu, Xiao P. [1 ]
Miao, Yan P. [1 ,2 ]
机构
[1] Inner Mongolia Med Univ, Dept Imaging Diag, Affiliated Hosp, Hohhot CIty, Inner Mongolia, Peoples R China
[2] Inner Mongolia Med Univ, Affiliated Hosp, Dept Imaging Diag, 1 Tunnel North St, Hohhot City 010050, nner Mongolia A, Peoples R China
关键词
DCE-MRI parameters; renal tumors; frequency size; histogram analysis; APPARENT DIFFUSION-COEFFICIENT; CANCER; HETEROGENEITY; EVOLUTION; MAP;
D O I
10.7754/Clin.Lab.2023.221126
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: We aimed to assess the role of histogram analysis of DCE-MRI parameters for accurately distinguishing renal clear cell carcinoma from renal hamartoma with minimal fat. Methods: Patients with renal tumors were enrolled from January 2013 to December 2015, including renal clear cell carcinoma (n = 39) and renal hamartoma (n = 10). Preoperative DCE-MR Imaging was performed, and whole-tumor regions of interest were drawn to obtain the corresponding histogram parameters, including skewness, kurtosis, frequency size, energy, quartile, etc. Histogram parameters differences between renal clear cell carcinoma and renal hamartoma with minimal fat were compared. The diagnostic value of each significant parameter in predicting malignant tumors was determined.Results: Histogram parameters of the DCE map contributed to differentiating the benign from malignant renal tumor groups. Histogram analysis of DCE maps could effectively present the heterogeneity of renal tumors and aid in differentiating benign and malignant tumors. ROC analysis results indicated that when frequency size = 1,732 was set as the threshold value, favorable diagnostic performance in predicting malignant tumors was achieved (AUC - 0.964; sensitivity - 84.6%; specificity - 100%), followed by skewness, Energy, Entropy, Uniformity, quartile 5, quartile 50, and kurtosis.Conclusions: Histogram analysis of DCE-MRI shows promise for differentiating benign and malignant renal tumors. Frequency size was the most significant parameter for predicting renal clear cell carcinoma.
引用
收藏
页码:2201 / 2207
页数:7
相关论文
共 50 条
  • [41] Radiomics in the Analysis of Breast Cancer Heterogeneity On DCE-MRI
    Li, H.
    Lan, L.
    Drukker, K.
    Perou, C.
    Giger, M.
    [J]. MEDICAL PHYSICS, 2015, 42 (06) : 3588 - 3588
  • [42] The reproducibility of perfusion parameters obtained from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in liver and lung tumors, and implications for sample size in clinical trials using DCE-MRI
    Ng, C. S.
    Jackson, E. F.
    Ashton, E.
    Raunig, D. L.
    Kelcz, F.
    Kurzrock, R.
    Charnsangavej, C.
    Evelhoch, J.
    McShane, J. M.
    [J]. EJC SUPPLEMENTS, 2006, 4 (12): : 43 - 44
  • [43] Quantitative Analysis of DCE-MRI and RESOLVE-DWI for Differentiating Nasopharyngeal Carcinoma from Nasopharyngeal Lymphoid Hyperplasia
    Yu, J. Y.
    Zhang, D.
    Huang, X. L.
    Ma, J.
    Yang, C.
    Li, X. J.
    Xiong, H.
    Zhou, B.
    Liao, R. K.
    Tang, Z. Y.
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (04)
  • [44] Association Between DCE-MRI Perfusion Histogram Parameters and EGFR and VEGF Expressions in Different Lauren Classifications of Advanced Gastric Cancer
    Li, Zhiheng
    Zhao, Zhenhua
    Wang, Chuchu
    Wang, Dandan
    Mao, Haijia
    Liu, Fang
    Yang, Ye
    Tao, Feng
    Lu, Zengxin
    [J]. PATHOLOGY & ONCOLOGY RESEARCH, 2022, 27
  • [45] PHARMACODYNAMIC PARAMETERS FROM DCE-MRI AS SURROGATE BIOMARKERS OF ANTITUMOR EFFECT OF BEVACIZUMAB IN COLORECTAL CANCER
    Hirashima, Yoshinori
    Yamada, Yasuhide
    Tateishi, Ukihide
    Kato, Ken
    Miyake, Mototaka
    Horita, Yosuke
    Akiyoshi, Kouhei
    Nakajima, Takako
    Hamaguchi, Tetsuya
    Shimada, Yasuhiro
    Shirao, Kuniaki
    [J]. ANNALS OF ONCOLOGY, 2010, 21 : 15 - 15
  • [46] Early Diagnosis Value of DCE-MRI Hemodynamic Parameters in Hepatocellular Carcinoma
    Mu, Xixi
    Zhong, Yue
    Zhang, Xuan
    Qu, Changjun
    [J]. JOURNAL OF ONCOLOGY, 2022, 2022
  • [47] Reproducibility and Comparison of DCE-MRI and DCE-CT Perfusion Parameters in a Rat Tumor Model
    Ng, Chaan S.
    Waterton, John C.
    Kundra, Vikas
    Brammer, David
    Ravoori, Murali
    Han, Lin
    Wei, Wei
    Klumpp, Sherry
    Johnson, Valen E.
    Jackson, Edward F.
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2012, 11 (03) : 279 - 288
  • [48] Workflow sensitivity of post-processing methods in renal DCE-MRI
    Hanson, Erik
    Eikefjord, Eli
    Rorvik, Jarle
    Andersen, Erling
    Lundervold, Arvid
    Hodneland, Erlend
    [J]. MAGNETIC RESONANCE IMAGING, 2017, 42 : 60 - 68
  • [49] Renal DCE-MRI Model Selection Using Bayesian Probability Theory
    Beeman, Scott C.
    Osei-Owusu, Patrick
    Duan, Chong
    Engelbach, John
    Bretthorst, G. Larry
    Ackerman, Joseph J. H.
    Blumer, Kendall J.
    Garbow, Joel R.
    [J]. TOMOGRAPHY, 2015, 1 (01) : 61 - 68
  • [50] Influence of temporal parameters of DCE-MRI on the quantification of heterogeneity in tumor vascularization
    Crombe, Amandine
    Saut, Olivier
    Guigui, Jerome
    Italiano, Antoine
    Buy, Xavier
    Kind, Michele
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (06) : 1773 - 1788