Antichain codes

被引:0
|
作者
Gunby, Benjamin [1 ]
He, Xiaoyu [2 ]
Narayanan, Bhargav [1 ]
Spiro, Sam [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Math, Princeton, NJ USA
关键词
D O I
10.1112/blms.12909
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets A$A$ is said to be an antichain if x & NSUB;y$x\not\subset y$ for all distinct x,y & ISIN;A$x,y\in A$, and it is said to be a distance-r$r$ code if every pair of distinct elements of A$A$ has Hamming distance at least r$r$. Here, we prove that if A & SUB;2[n]$A\subset 2<^>{[n]}$ is both an antichain and a distance-r$r$ code, then |A|=Or(2nn-1/2-L(r-1)/2<SIC> RIGHT FLOOR)$|A| = O_r(2<^>n n<^>{-1/2 - \lfloor (r-1)/2\rfloor } )$. This result, which is best-possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood-Offord theory; for example, our result gives a short combinatorial proof of Halasz's theorem, while all previously known proofs of this result are Fourier-analytic.
引用
收藏
页码:3053 / 3062
页数:10
相关论文
共 50 条