Antichain codes

被引:0
|
作者
Gunby, Benjamin [1 ]
He, Xiaoyu [2 ]
Narayanan, Bhargav [1 ]
Spiro, Sam [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Math, Princeton, NJ USA
关键词
D O I
10.1112/blms.12909
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets A$A$ is said to be an antichain if x & NSUB;y$x\not\subset y$ for all distinct x,y & ISIN;A$x,y\in A$, and it is said to be a distance-r$r$ code if every pair of distinct elements of A$A$ has Hamming distance at least r$r$. Here, we prove that if A & SUB;2[n]$A\subset 2<^>{[n]}$ is both an antichain and a distance-r$r$ code, then |A|=Or(2nn-1/2-L(r-1)/2<SIC> RIGHT FLOOR)$|A| = O_r(2<^>n n<^>{-1/2 - \lfloor (r-1)/2\rfloor } )$. This result, which is best-possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood-Offord theory; for example, our result gives a short combinatorial proof of Halasz's theorem, while all previously known proofs of this result are Fourier-analytic.
引用
收藏
页码:3053 / 3062
页数:10
相关论文
共 50 条
  • [1] Antichain codes
    Cohen, GD
    Encheva, SB
    Zemor, G
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 232 - 232
  • [2] Antichain codes
    Cohen, GD
    Encheva, SB
    Zémor, G
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 18 (1-3) : 71 - 80
  • [3] Antichain Codes
    Gérard D. Cohen
    Sylvia B. Encheva
    Gilles Zémor
    Designs, Codes and Cryptography, 1999, 18 : 71 - 80
  • [4] ANTICHAIN SEQUENCES
    CAMERON, K
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (03): : 249 - 255
  • [5] ANTICHAIN CUTSETS
    RIVAL, I
    ZAGUIA, N
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 1 (03): : 235 - 247
  • [6] Antichain Graphs
    Shahistha
    Bhat, K Arathi
    G, Sudhakara
    IAENG International Journal of Applied Mathematics, 2021, 51 (03) : 1 - 7
  • [7] Antichain Simplices
    Braun, Benjamin
    Davis, Brian
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (01)
  • [8] Towards Antichain Algebra
    Moeller, Bernhard
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE (RAMICS 2015), 2015, 9348 : 344 - 361
  • [9] On the antichain tree property
    Ahn, JinHoo
    Kim, Joonhee
    Lee, Junguk
    JOURNAL OF MATHEMATICAL LOGIC, 2023, 23 (02)
  • [10] Finite Antichain Cutsets in Posets
    李伯渝
    Acta Mathematica Sinica,English Series, 1991, (01) : 51 - 61