Synergizing Low Rank Representation and Deep Learning for Automatic Pavement Crack Detection

被引:7
|
作者
Gao, Zhi [1 ,2 ]
Zhao, Xuhui [1 ,2 ]
Cao, Min [3 ]
Li, Ziyao [1 ]
Liu, Kangcheng [4 ]
Chen, Ben M. [5 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Hubei Luojia Lab, Wuhan 430079, Peoples R China
[3] Wuhan Guanggu Zoyon Sci & Technol Co Ltd, Wuhan 430223, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[5] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
关键词
Task analysis; Deep learning; Three-dimensional displays; Visualization; Roads; Feature extraction; Laser radar; Pavement crack detection; low rank representation; deep learning; RECOGNITION; EXTRACTION; ALGORITHM; NETWORK; MOTION;
D O I
10.1109/TITS.2023.3275570
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to the critical role of pavement crack detection for road maintenance and eventually ensuring safety, remarkable efforts have been devoted to this research area, and such a trend is further intensified for the coming unmanned vehicle era. However, such crack detection task still remains unexpectedly challenging in practice since the appearance of both cracks and the background are diverse and complex in real scenarios. In this work, we propose an automatic pavement crack detection method via synergizing low rank representation (LRR) and deep learning techniques. First, leveraging LRR which facilitates anomaly detection without making any specific assumption, we can easily discriminate most of the frames with cracks from the long sequence with a consistent pavement base, followed by a straightforward algorithm to localize the cracks. In order to achieve the intelligence of detecting cracks with different pavement basis under unconstrained imaging conditions, we resort to deep learning techniques and propose a deep convolutional neural network for crack detection leveraging on multi-level features and atrous spatial pyramid pooling (ASPP). We train this network based on the training data obtained in the previous stage in an end-to-end manner. Extensive experiments on a wide range of pavements demonstrate the high performance in terms of both accuracy and automaticity. Moreover, the dataset generated by us is much more extensive and challenging than public ones. We put it online at https://gaozhinuswhu.com to benefit the community.
引用
收藏
页码:10676 / 10690
页数:15
相关论文
共 50 条
  • [21] Deep Domain Adaptation for Pavement Crack Detection
    Liu, Huijun
    Yang, Chunhua
    Li, Ao
    Huang, Sheng
    Feng, Xin
    Ruan, Zhimin
    Ge, Yongxin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1669 - 1681
  • [22] Pavement crack characteristic detection based on sparse representation
    Xiaoming Sun
    Jianping Huang
    Wanyu Liu
    Mantao Xu
    EURASIP Journal on Advances in Signal Processing, 2012
  • [23] Pavement crack characteristic detection based on sparse representation
    Sun, Xiaoming
    Huang, Jianping
    Liu, Wanyu
    Xu, Mantao
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [24] Automatic Pavement Crack Detection Fusing Attention Mechanism
    Ren, Junhua
    Zhao, Guowu
    Ma, Yadong
    Zhao, De
    Liu, Tao
    Yan, Jun
    ELECTRONICS, 2022, 11 (21)
  • [25] Road Pavement Crack Automatic Detection by MMS Images
    Mancini, A.
    Malinverni, E. S.
    Frontoni, E.
    Zingaretti, P.
    2013 21ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2013, : 1589 - 1596
  • [26] An Automatic Pavement Crack Detection System with FocusCrack Dataset
    Yan, Xinyun
    Shi, Shang
    Xu, Xiaohu
    He, Zhengran
    Zhou, Xiaofeng
    Wang, Chishe
    Lu, Zhiyi
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [27] Automatic crack detection of dam concrete structures based on deep learning
    Lv, Zongjie
    Tian, Jinzhang
    Zhu, Yantao
    Li, Yangtao
    COMPUTERS AND CONCRETE, 2023, 32 (06): : 615 - 623
  • [28] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [29] Pavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion Model
    Feng, Xiaoran
    Xiao, Liyang
    Li, Wei
    Pei, Lili
    Sun, Zhaoyun
    Ma, Zhidan
    Shen, Hao
    Ju, Huyan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [30] Two-step deep learning approach for pavement crack damage detection and segmentation
    Jiang, Yongqing
    Pang, Dandan
    Li, Chengdong
    Yu, Yulong
    Cao, Yukang
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2023, 24 (02)