large language models;
language models;
language model;
EHR;
health record;
health records;
quality improvement;
Artificial Intelligence;
Natural Language Processing;
D O I:
10.2196/49886
中图分类号:
R-058 [];
学科分类号:
摘要:
Background: Best Practice Alerts (BPAs) are alert messages to physicians in the electronic health record that are used to encourage appropriate use of health care resources. While these alerts are helpful in both improving care and reducing costs, BPAs are often broadly applied nonselectively across entire patient populations. The development of large language models (LLMs) provides an opportunity to selectively identify patients for BPAs.Objective: In this paper, we present an example case where an LLM screening tool is used to select patients appropriate for a BPA encouraging the prescription of deep vein thrombosis (DVT) anticoagulation prophylaxis. The artificial intelligence (AI) screening tool was developed to identify patients experiencing acute bleeding and exclude them from receiving a DVT prophylaxis BPA.Methods: Our AI screening tool used a BioMed-RoBERTa (Robustly Optimized Bidirectional Encoder Representations from Transformers Pretraining Approach; AllenAI) model to perform classification of physician notes, identifying patients without active bleeding and thus appropriate for a thromboembolism prophylaxis BPA. The BioMed-RoBERTa model was fine-tuned using 500 history and physical notes of patients from the MIMIC-III (Medical Information Mart for Intensive Care) database who were not prescribed anticoagulation. A development set of 300 MIMIC patient notes was used to determine the model's hyperparameters, and a separate test set of 300 patient notes was used to evaluate the screening tool.Results: Our MIMIC-III test set population of 300 patients included 72 patients with bleeding (ie, were not appropriate for a DVT prophylaxis BPA) and 228 without bleeding who were appropriate for a DVT prophylaxis BPA. The AI screening tool achieved impressive accuracy with a precision-recall area under the curve of 0.82 (95% CI 0.75-0.89) and a receiver operator curve area under the curve of 0.89 (95% CI 0.84-0.94). The screening tool reduced the number of patients who would trigger an alert by 20% (240 instead of 300 alerts) and increased alert applicability by 14.8% (218 [90.8%] positive alerts from 240 total alerts instead of 228 [76%] positive alerts from 300 total alerts), compared to nonselectively sending alerts for all patients. Conclusions: These results show a proof of concept on how language models can be used as a screening tool for BPAs. We provide an example AI screening tool that uses a HIPAA (Health Insurance Portability and Accountability Act)-compliant BioMed-RoBERTa model deployed with minimal computing power. Larger models (eg, Generative Pre-trained Transformers-3, Generative Pre-trained Transformers-4, and Pathways Language Model) will exhibit superior performance but require data use agreements to be HIPAA compliant. We anticipate LLMs to revolutionize quality improvement in hospital medicine.
机构:
Barnes Jewish Hosp, Dept Rehabil, St Louis, MO 63110 USABarnes Jewish Hosp, Dept Rehabil, St Louis, MO 63110 USA
Edmiaston, Jeff
Connor, Lisa Tabor
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
Washington Univ, Sch Med, Dept Occupat Therapy, St Louis, MO 63110 USABarnes Jewish Hosp, Dept Rehabil, St Louis, MO 63110 USA
Connor, Lisa Tabor
Loehr, Lynda
论文数: 0引用数: 0
h-index: 0
机构:
Barnes Jewish Hosp, Dept Rehabil, St Louis, MO 63110 USABarnes Jewish Hosp, Dept Rehabil, St Louis, MO 63110 USA
Loehr, Lynda
Nassief, Abdullah
论文数: 0引用数: 0
h-index: 0
机构:Barnes Jewish Hosp, Dept Rehabil, St Louis, MO 63110 USA
机构:
Korea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Kim, Yeseul
论文数: 引用数:
h-index:
机构:
Park, Yeonsoo
Cho, Gyeongcheol
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Dept Psychol, Montreal, PQ, CanadaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Cho, Gyeongcheol
Park, Kiho
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Park, Kiho
Kim, Shin-Hyang
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Kim, Shin-Hyang
Baik, Seung Yeon
论文数: 0引用数: 0
h-index: 0
机构:
Inje Univ, Clin Emot & Cognit Res Lab, Ilsan Paik Hosp, 170 Juhwa Ro, Goyang 10380, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Baik, Seung Yeon
Kim, Cho Long
论文数: 0引用数: 0
h-index: 0
机构:
Inje Univ, Clin Emot & Cognit Res Lab, Ilsan Paik Hosp, 170 Juhwa Ro, Goyang 10380, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Kim, Cho Long
Jung, Sooyun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Jung, Sooyun
Lee, Won-Hye
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Mental Hlth, Dept Clin Psychol, Seoul, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Lee, Won-Hye
Choi, Younyoung
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Cyber Univ, Dept Adolescent Psychol, 220 Wangsimni Ro, Seoul 04763, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Choi, Younyoung
Lee, Seung-Hwan
论文数: 0引用数: 0
h-index: 0
机构:
Inje Univ, Clin Emot & Cognit Res Lab, Ilsan Paik Hosp, 170 Juhwa Ro, Goyang 10380, South Korea
Inje Univ, Dept Psychiat, Ilsan Paik Hosp, 170 Juhwa Ro, Goyang 10380, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
Lee, Seung-Hwan
Choi, Kee-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South KoreaKorea Univ, Dept Psychol, 145 Anam Ro, Seoul 02841, South Korea
机构:
Georgetown Univ, Med Ctr, Washington, DC 20007 USA
Georgetown Lombardi Comprehens Canc Ctr, Washington, DC USAGeorgetown Univ, Med Ctr, Washington, DC 20007 USA
Jayasekera, J.
Mandelblatt, J.
论文数: 0引用数: 0
h-index: 0
机构:
Georgetown Univ, Med Ctr, Washington, DC 20007 USAGeorgetown Univ, Med Ctr, Washington, DC 20007 USA
Mandelblatt, J.
Schechter, C.
论文数: 0引用数: 0
h-index: 0
机构:
Albert Einstein Coll Med, Bronx, NY 10467 USAGeorgetown Univ, Med Ctr, Washington, DC 20007 USA