On the CLT for Linear Eigenvalue Statistics of a Tensor Model of Sample Covariance Matrices

被引:0
|
作者
Dembczak-Kolodziejczyk, Alicja [1 ]
Lytova, Anna [1 ]
机构
[1] Univ Opole, 48 Oleska, PL-45052 Opole, Poland
关键词
sample covariance matrices; CLT; linear eigenvalue statistics; CENTRAL-LIMIT-THEOREM; SPECTRAL STATISTICS; FLUCTUATIONS; WIGNER; BOUNDS;
D O I
10.15407/mag19.02.374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [18], there was proved the CLT for linear eigenvalue statistics Tr phi(M-n) of sample covariance matrices of the form M-n = Sigma(m)(alpha=1) y(alpha)((1)) circle times y(alpha)((2)) (y(a)((1)) circle times y(alpha)((2)))(T), where (y(alpha)((1)), y(alpha)((2)))(alpha) are iid copies of y is an element of 2 R-n satisfying Eyy(T) = n(-1) I-n, Ey(i)(2)iy(j)(2) = (1+delta(ii)jd)n(-2) +a(1+delta(ii)jd(1))n(-3) +O(n(-4)) for some a, d, d(1) R. It was shown that given a smooth enough test function phi, VarTr phi(Mn) = O(n) as m, n -> infinity, m/n(2) -> c > 0, and (Tr phi(M-n) - ETr phi(M-n))/root n converges in distribution to a Gaussian mean zero random variable with variance V [phi] proportional to a + d. It was noticed that if y is uniformly distributed on the unit sphere then a + d = 0 and V [phi] vanishes. In this note we show that in this case VarTr(M-n - zI(n))(-1) = O(1), so that the CLT should be valid for linear eigenvalue statistics themselves without a normalising factor in front (in contrast to the Gaussian case.)
引用
收藏
页码:374 / 395
页数:22
相关论文
共 50 条
  • [31] CLT for Linear Spectral Statistics of Wigner matrices
    Bai, Zhidong
    Wang, Xiaoying
    Zhou, Wang
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2391 - 2417
  • [32] Linear eigenvalue statistics of XX′ matrices
    Kumar, A. S. Kiran
    Maurya, Shambhu Nath
    Saha, Koushik
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [33] QUANTITATIVE UNIVERSALITY FOR THE LARGEST EIGENVALUE OF SAMPLE COVARIANCE MATRICES
    Wang, Haoyu
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 2539 - 2565
  • [34] Eigenvalue Estimation of the Exponentially Windowed Sample Covariance Matrices
    Yazdian, Ehsan
    Gazor, Saeed
    Bastani, Mohammad Hasan
    Sharifitabar, Mohsen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (07) : 4300 - 4311
  • [35] Linear Pooling of Sample Covariance Matrices
    Raninen, Elias
    Tyler, David E.
    Ollila, Esa
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 659 - 672
  • [36] CLT for eigenvalue statistics of large-dimensional general Fisher matrices with applications
    Zheng, Shurong
    Bai, Zhidong
    Yao, Jianfeng
    BERNOULLI, 2017, 23 (02) : 1130 - 1178
  • [37] ASYMPTOTIC INDEPENDENCE OF SPIKED EIGENVALUES AND LINEAR SPECTRAL STATISTICS FOR LARGE SAMPLE COVARIANCE MATRICES
    Zhang, Zhixiang
    Zheng, Shurong
    Pan, Guangming
    Zhong, Ping-Shou
    ANNALS OF STATISTICS, 2022, 50 (04): : 2205 - 2230
  • [38] Eigenvalue distributions for some correlated complex sample covariance matrices
    Forrester, P. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (36) : 11093 - 11103
  • [39] Large deviations for the largest eigenvalue of generalized sample covariance matrices
    Husson, Jonathan
    Mc Kenna, Benjamin
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [40] UNIVERSALITY FOR THE LARGEST EIGENVALUE OF SAMPLE COVARIANCE MATRICES WITH GENERAL POPULATION
    Bao, Zhigang
    Pan, Guangming
    Zhou, Wang
    ANNALS OF STATISTICS, 2015, 43 (01): : 382 - 421