CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid

被引:78
|
作者
Du, Jiannan [1 ]
Han, Guokang [1 ]
Zhang, Wei [1 ]
Li, Lingfeng [1 ]
Yan, Yuqi [1 ]
Shi, Yaoxuan [1 ]
Zhang, Xue [2 ]
Geng, Lin [3 ]
Wang, Zhijiang [1 ]
Xiong, Yueping [1 ]
Yin, Geping [1 ]
Du, Chunyu [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr Mat & Interfaces, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ACTIVE-SITES; ELECTROCATALYST; METAL; EFFICIENCY; STRATEGY; NUMBER; IMPACT;
D O I
10.1038/s41467-023-40467-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The two-electron oxygen reduction reaction in acid is highly attractive to produce H2O2, a commodity chemical vital in various industry and household scenarios, which is still hindered by the sluggish reaction kinetics. Herein, both density function theory calculation and in-situ characterization demonstrate that in dual-atom CoIn catalyst, O-affinitive In atom triggers the favorable and stable adsorption of hydroxyl, which effectively optimizes the adsorption of OOH on neighboring Co. As a result, the oxygen reduction on Co atoms shifts to two-electron pathway for efficient H2O2 production in acid. The H2O2 partial current density reaches 1.92 mA cm(-2) at 0.65 V in the rotating ring-disk electrode test, while the H2O2 production rate is as high as 9.68 mol g(-1) h(-1) in the three-phase flow cell. Additionally, the CoIn-N-C presents excellent stability during the long-term operation, verifying the practicability of the CoIn-N-C catalyst. This work provides inspiring insights into the rational design of active catalysts for H2O2 production and other catalytic systems. The 2-electron oxygen reduction in acid is highly attractive to produce H2O2, a vital commodity chemical. Here, the authors report CoIn-N-C dual-atom catalyst for effective H(2)O2 production in acid, and show in-situ hydroxyl adsorption on In atoms is important for the selectivity alteration on nearby Co atoms.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity
    Meng Zheng
    Jin Wang
    Chemical Research in Chinese Universities, 2022, 38 : 1275 - 1281
  • [12] Well-Defined Co2 Dual-Atom Catalyst Breaks Scaling Relations of Oxygen Reduction Reaction
    Sun, Qidi
    Yue, Xian
    Yu, Linke
    Li, Fu-Zhi
    Zheng, Yiwei
    Liu, Meng-Ting
    Peng, Jian-Zhao
    Hu, Xile
    Chen, Hao Ming
    Li, Lei
    Gu, Jun
    Journal of the American Chemical Society, 1600, 146 (51): : 35295 - 35304
  • [13] Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction
    Yan, Li
    Mao, Yu
    Li, Yingxin
    Sha, Qihao
    Sun, Kai
    Li, Panpan
    Waterhouse, Geoffrey I. N.
    Wang, Ziyun
    Tian, Shubo
    Sun, Xiaoming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (01)
  • [14] A Supported Metal Dual-Atom Site Catalyst for Oxygen Reduction: A First-Principles Study
    Xu, Chun
    He, Feng
    Huang, Minggang
    Ji, Hua
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2024, 60 (06) : 486 - 494
  • [15] Advanced dual-atom catalysts for efficient oxygen evolution reaction
    Zheng, Xiaobo
    Yang, Jiarui
    Wang, Dingsheng
    EES CATALYSIS, 2023, 1 (05): : 665 - 676
  • [16] Construction of Dual-Atom Fe via Face-to-Face Assembly of Molecular Phthalocyanine for Superior Oxygen Reduction Reaction
    Kumar, Anuj
    Sun, Kai
    Duan, Xinxuan
    Tian, Shubo
    Sun, Xiaoming
    CHEMISTRY OF MATERIALS, 2022, 34 (12) : 5598 - 5606
  • [17] Theoretical insights into dual-atom catalysts for the oxygen reduction reaction: the crucial role of orbital polarization
    Zou, Wanjuan
    Lu, Ruihu
    Liu, Xiaolin
    Xiao, Gaofan
    Liao, Xiaobin
    Wang, Zhaoyang
    Zhao, Yan
    JOURNAL OF MATERIALS CHEMISTRY A, 2022,
  • [18] Screening of dual-atom catalysts for hydrogen evolution reaction on graphdiyne
    Qin, Lei
    Wang, Shitao
    Rong, Ju
    Wei, Yan
    Yu, Xiaohua
    Sui, Yudong
    Yang, Yongqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 99 : 409 - 417
  • [19] Revealing a synergistic orbital coupling adsorption mechanism of the oxygen reduction reaction in dual-atom catalysts
    Liu, Yangfan
    Li, Yejun
    Liu, Xinghan
    Li, Jinming
    Zhang, Gufei
    Gong, Jun
    Jiang, Yanbin
    Li, Zhou
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (44) : 30676 - 30684
  • [20] Advances in Catalyst Materials for the Hydrogen Peroxide Production by Electrocatalytic Oxygen Reduction
    Lei J.
    Chen Z.
    Li Y.
    Cao Y.
    Cailiao Daobao/Materials Reports, 2021, 35 (09): : 9140 - 9149