Classifying cubic symmetric graphs of order 52p2

被引:0
|
作者
Hao, Shangjing [1 ]
Lin, Shixun [2 ,3 ]
机构
[1] Xian Shiyou Univ, Sch Sci, Xian 710065, Peoples R China
[2] Zhaotong Univ, Sch Math & Stat, Zhaotong 657000, Peoples R China
[3] China Univ Geosci Beijing, Sch Sci, Beijing 100083, Peoples R China
关键词
cubic symmetric graph; simple group; s-regular graph; SMALL NUMBER TIMES; S-REGULAR GRAPHS; PRIME; TWICE;
D O I
10.3176/proc.2023.1.06
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. In this paper, we classify all connected cubic symmetric graphs of order 52p2 for each prime p.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 50 条
  • [21] Classifying cubic edge-transitive graphs of order 8p
    Mehdi Alaeiyan
    M. K. Hosseinipoor
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 647 - 653
  • [22] Notes on cubic symmetric graphs of order 22p3
    Zhai, Liangliang
    Ma, Xuanlong
    [J]. ARS COMBINATORIA, 2020, 148 : 69 - 75
  • [23] Cubic semi-symmetric graphs of order 14p2, where p is a prime
    Darafsheh, M. R.
    Shahsavaran, M.
    [J]. ARS COMBINATORIA, 2021, 154 : 53 - 59
  • [24] Note on cubic symmetric graphs of order 2pn
    Cheng, Hui-Wen
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 47 : 205 - 210
  • [25] Classifying Cubic Semisymmetric Graphs of Order 18 pn
    A. A. Talebi
    N. Mehdipoor
    [J]. Graphs and Combinatorics, 2014, 30 : 1037 - 1044
  • [26] Edge-transitive dihedral or cyclic covers of cubic symmetric graphs of order 2P
    Jin-Xin Zhou
    Yan-Quan Feng
    [J]. Combinatorica, 2014, 34 : 115 - 128
  • [27] Edge-transitive dihedral or cyclic covers of cubic symmetric graphs of order 2P
    Zhou, Jin-Xin
    Feng, Yan-Quan
    [J]. COMBINATORICA, 2014, 34 (01) : 115 - 128
  • [28] A Note on Two-Generator 2-Group Covers of Cubic Symmetric Graphs of Order 2p
    Wang, Xue
    Zhou, Jinxin
    [J]. ALGEBRA COLLOQUIUM, 2022, 29 (04) : 713 - 720
  • [29] Semisymmetric cubic graphs of order 16p 2
    Alaeiyan, Mehdi
    Tavallaee, Hamid A.
    Onagh, B. N.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (01): : 19 - 26
  • [30] On semisymmetric cubic graphs of order 6p2
    Lu, ZP
    Wang, CQ
    Xu, MY
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (01): : 1 - 17