In situ FTIR study of 2D-carbon materials for CO2 splitting under non-thermal plasma environment - selective CO production

被引:3
|
作者
Wisniewski, Marek [1 ]
Liu, Xinying [2 ]
机构
[1] Nicolaus Copernicus Univ Torun, Fac Chem, Gagarina 7, PL-87100 Torun, Poland
[2] Univ South Africa, Inst Dev Energy African Sustainabil, Private Bag X6, ZA-1710 Florida, South Africa
关键词
Compendex;
D O I
10.1039/d3ta00953j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide conversion has been considered a promising solution to global warming and the storage of renewable energy as a source of CO. However, it is challenging to develop a process that combines complete conversion from one oxidant (CO2) to another - O-2. In this study, CO2 splitting has been investigated and monitored in situ, by using the plasma generated in a glow discharge reactor packed with carbonaceous materials. The results presented in the form of 2D-carbon surface FTIR spectra indicate that materials play here at least a double role as: (i) a solid adsorbent and (ii) an oxygen scavenger, shifting the overall reaction equilibrium to CO - the product side. It was proved that excited surface CO2 species are present as active intermediates. Their origin is not only the transformation from physically adsorbed molecules but also from C=O and C-O surface oxides formed through the Boudouard reaction. Microscopic and Raman spectroscopy investigations confirm this statement.
引用
收藏
页码:10677 / 10683
页数:7
相关论文
共 50 条
  • [21] Application of Co/ZSM-5 Catalyst and Non-Thermal Plasma on CO2 Hydrogenation to Light Hydrocarbons
    Lan, Liying
    Zeng, Aonan
    Wang, Anjie
    Wang, Yao
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36 (02): : 293 - 300
  • [22] Catalytic non-thermal milli-pulse plasma for methanation of CO2 without carbon deposition and catalyst deactivation
    Sajjadi, Baharak
    Chen, Wei-Yin
    CHEMICAL ENGINEERING JOURNAL, 2023, 469
  • [23] CO2 reduction using non-thermal plasma generated with photovoltaic energy in a fluidized reactor
    Pou, J. O.
    Colominas, C.
    Gonzalez-Olmos, R.
    JOURNAL OF CO2 UTILIZATION, 2018, 27 : 528 - 535
  • [24] CO2 decomposition to CO in the presence of up to 50% O2 using a non-thermal plasma at atmospheric temperature and pressure
    Zhang, Kui
    Harvey, Adam P.
    CHEMICAL ENGINEERING JOURNAL, 2021, 405
  • [25] Coupling of heterogeneous catalysts with non-thermal plasma for CO2 methanation: probing the reaction mechanisms using in-situ DRIFTS
    Chen, Huanhao
    Mu, Yibing
    Chansai, Sarayute
    Stere, Cristina
    Fan, Xiaolei
    Hardacre, Chris
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [26] Non-thermal plasma-assisted catalytic CO2 conversion over Zn-TCPP 2D catalyst
    Marek Wiśniewski
    Artur P. Terzyk
    Adsorption, 2020, 26 : 1165 - 1171
  • [27] Non-thermal plasma-assisted catalytic CO2 conversion over Zn-TCPP 2D catalyst
    Wisniewski, Marek
    Terzyk, Artur P.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2020, 26 (07): : 1165 - 1171
  • [28] Integrated CO2 Capture and Utilization Using Non-Thermal Plasmolysis
    Moss, Matthew
    Reed, Daniel G.
    Allen, Ray W. K.
    Styring, Peter
    FRONTIERS IN ENERGY RESEARCH, 2017, 5
  • [29] Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation
    Wang, Jiajie
    Wang, Xiaoxing
    AlQahtani, Mohammad S.
    Knecht, Sean D.
    Bilen, Sven G.
    Chu, Wei
    Song, Chunshan
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [30] Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation
    Wang, Jiajie
    Wang, Xiaoxing
    AlQahtani, Mohammad S.
    Knecht, Sean D.
    Bilén, Sven G.
    Chu, Wei
    Song, Chunshan
    Chemical Engineering Journal, 2023, 451