A composite electrode with gradient pores for high-performance aqueous redox flow batteries

被引:3
|
作者
Zhang, Zhihui [1 ,2 ]
Zhang, Baowen [3 ]
Wei, Lei [4 ]
Lei, Yuan [5 ]
Bai, Bofeng [3 ]
Chen, Liuping [6 ]
Xu, Junhui [6 ]
Zhao, Tianshou [4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] BYD Auto Ind Co Ltd, Shenzhen, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[4] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Dept Mech & Energy Engn, Shenzhen, Peoples R China
[5] Northwest Univ, Sch Chem Engn, Xian 710069, Peoples R China
[6] Chinasalt Jintan Co Ltd, Jiangsu Engn Res Ctr Comprehens Utilizat Well & Ro, Changzhou 213200, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Vanadium flow battery; Gradient porosity; Surface area; Mass transport; Efficiency; GRAPHITE FELT ELECTRODES; ELECTROCATALYST; ENHANCEMENT; EFFICIENT; NITRIDE; STORAGE; ENERGY; MODEL;
D O I
10.1016/j.est.2023.106755
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large surface areas while maintaining a low mass transport resistance is a critical criterion for the optimal design of electrode structures for aqueous redox flow batteries. However, for conventional micro-scale electrode structures, increasing surface areas will lead to an increase in the mass transfer resistance. In this work, a composite electrode with a gradient porosity distribution is fabricated through combining two different carbon felt layers of different porosities. The smaller-porosity layer, offering a larger surface area, is placed adjacent to the membrane, while the larger-porosity layer, providing a smaller mass transfer resistance is placed on the flow field side. The thickness ratio of the two layers is adjusted in terms of the battery performance while applied in the vanadium redox flow battery. It is demonstrated that the battery with the structure-optimized composite electrode achieves a high energy efficiency of 82.7 % at 200 mA.cm(-2) at an electrolyte flow rate of 30 mL.min(-1), and delivers a discharge capacity of 240 mAh at 400 mA.cm(-2), which is 2.18 times that of the conventional graphite felt electrode. This work offers an idea for the structural design of high-performance aqueous redox flow batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents
    Sun, C. -N.
    Mench, M. M.
    Zawodzinski, T. A.
    ELECTROCHIMICA ACTA, 2017, 237 : 199 - 206
  • [32] High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries
    Ahn, Yeonjoo
    Moon, Janghyuk
    Park, Seoung Eun
    Shin, Jaeho
    Choi, Jang Wook
    Kim, Ki Jae
    CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [33] Sponge-Like Microfiber Electrodes for High-Performance Redox Flow Batteries
    Sun, Jing
    Wan, Yuhan
    Jian, Qinping
    Fan, Xinzhuang
    Zhao, Tianshou
    SMALL METHODS, 2022, 6 (10)
  • [34] Toward High-Performance Nonaqueous Redox Flow Batteries through Electrolyte Design
    Pahari, Shyam K. K.
    Gokoglan, Tugba Ceren
    Chaurasia, Shabdiki
    Bolibok, Jennifer N. N.
    Golen, James A. A.
    Agar, Ertan
    Cappillino, Patrick J. J.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7521 - 7534
  • [35] Hydrated eutectic electrolyte as catholyte enables high-performance redox flow batteries
    Xuan, Tao
    Cheng, Xusheng
    Wang, Liwei
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [36] Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries
    Leung, P.
    Martin, T.
    Liras, M.
    Berenguer, A. M.
    Marcilla, R.
    Shah, A.
    An, L.
    Anderson, M. A.
    Palma, J.
    APPLIED ENERGY, 2017, 197 : 318 - 326
  • [37] High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection
    Liu, Q. H.
    Grim, G. M.
    Papandrew, A. B.
    Turhan, A.
    Zawodzinski, T. A.
    Mench, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) : A1246 - A1252
  • [38] Numerical modeling of a convection-enhanced flow field for high-performance redox flow batteries
    Guo, Zixiao
    Sun, Jing
    Fan, Xinzhuang
    Zhao, Tianshou
    JOURNAL OF POWER SOURCES, 2023, 583
  • [39] Air Plasma Modification of Graphite-Based Electrode for Improved Performance of Aqueous Redox Flow Batteries
    Bassil, Patricia
    Fall, Coumba
    Boutamine, Karim
    Favier, Frederic
    Le Vot, Steven
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (06)
  • [40] A high-performance ammonia plasma-treated WO3@carbon felt electrode for vanadium redox flow batteries
    Xiang, Weizhe
    Xu, Jian
    Zhang, Yiqiong
    Fu, Hu
    Zhu, Xiaobo
    Lou, Xuechun
    Qin, Chengpeng
    Ding, Mei
    Jia, Chuankun
    FUNCTIONAL MATERIALS LETTERS, 2021, 14 (07)