Testing general relativity: New measurements of gravitational redshift in galaxy clusters

被引:2
|
作者
Rosselli, D. [1 ,2 ]
Marulli, F. [1 ,3 ,4 ]
Veropalumbo, A. [5 ,6 ]
Cimatti, A. [1 ,7 ]
Moscardini, L. [1 ,3 ,4 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dipartimento Fis & Astron Augusto Righi, Via Piero Gobetti 93-2, I-40129 Bologna, Italy
[2] Aix Marseille Univ, CNRS IN2P3, CPPM, 163 Ave Luminy, Case 902, F-13288 Marseille 09, France
[3] INAF Osservatorio Astrofis & Sci Spazio Bologna, Via Piero Gobetti 93-3, I-40129 Bologna, Italy
[4] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
[5] Univ Roma Tre, Dipartimento Fis, Via Vasca Navale 84, I-00146 Rome, Italy
[6] Ist Nazl Fis Nucl, Sez Roma Tre, Via Vasca Navale 84, I-00146 Rome, Italy
[7] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
关键词
gravitation; galaxies; clusters; general; cosmology; observations; DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; DATA RELEASE; SPACE DISTORTIONS; COSMIC GROWTH; CONSTRAINTS; COSMOLOGY; GRAVITY; BRANE;
D O I
10.1051/0004-6361/202244244
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The peculiar velocity distribution of cluster member galaxies provides a powerful tool to directly investigate the gravitational potentials within galaxy clusters and to test the gravity theory on megaparsec scales.Aims. We exploit spectroscopic galaxy and galaxy cluster samples extracted from the latest releases of the Sloan Digital Sky Survey (SDSS) to derive new constraints on the gravity theory.Methods. We considered a spectroscopic sample of 3058 galaxy clusters, with a maximum redshift of 0.5 and masses between 10(14) - 10(15) M-circle dot. We analysed the velocity distribution of the cluster member galaxies to make new measurements of the gravitational redshift effect inside galaxy clusters. We accurately estimated the cluster centres, computing them as the average of angular positions and redshifts of the closest galaxies to the brightest cluster galaxies. We find that this centre definition provides a better estimation of the centre of the cluster gravitational potential wells, relative to simply assuming the brightest cluster galaxies as the cluster centres, as done in past literature works. We compared our measurements with the theoretical predictions of three different gravity theories: general relativity (GR), the f(R) model, and the Dvali-Gabadadze-Porrati (DGP) model. A new statistical procedure was used to fit the measured gravitational redshift signal, and thus to discriminate among the considered gravity theories. Finally, we investigated the systematic uncertainties that possibly affect the analysis.Results. We clearly detect the gravitational redshift effect in the exploited cluster member catalogue. We recover an integrated gravitational redshift signal of -11.4 +/- 3.3 km s(-1), which is in agreement, within the errors, with past literature works.Conclusions. Overall, our results are consistent with both GR and DGP predictions, while they are in marginal disagreement with the predictions of the considered f(R) strong field model.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] High redshift galaxy clusters as probes of cosmology
    Sommer-Larsen, J
    Götz, M
    CHEMICAL ENRICHMENT OF INTRACLUSTER AND INTERGALACTIC MEDIUM, 2002, 253 : 195 - 200
  • [42] The galaxy population of intermediate-redshift clusters
    Dahlén, T
    Fransson, C
    Östlin, G
    Näslund, M
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 350 (01) : 253 - 266
  • [43] Morphological evolution in high redshift galaxy clusters
    Stanford, SA
    HY-REDSHIFT UNIVERSE: GALAXY FORMATION AND EVOLUTION AT HIGH REDSHIFT, 1999, 193 : 304 - 311
  • [44] Testing General Relativity on Cosmic Scales with the Observed Abundance of Massive Clusters
    Rapetti, David
    Allen, Steven W.
    Mantz, Adam
    Ebeling, Harald
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (190): : 179 - 187
  • [45] Testing gravity theories via transverse Doppler and gravitational redshifts in galaxy clusters
    Zhao, HongSheng
    Peacock, John A.
    Li, Baojiu
    PHYSICAL REVIEW D, 2013, 88 (04):
  • [46] The solar gravitational redshift from HARPS-LFC Moon spectra A test of the general theory of relativity
    Gonzalez Hernandez, J., I
    Rebolo, R.
    Pasquini, L.
    Lo Curto, G.
    Molaro, P.
    Caffau, E.
    Ludwig, H-G
    Steffen, M.
    Esposito, M.
    Suarez Mascareno, A.
    Toledo-Padron, B.
    Probst, R. A.
    Haensch, T. W.
    Holzwarth, R.
    Manescau, A.
    Steinmetz, T.
    Udem, Th
    Wilken, T.
    ASTRONOMY & ASTROPHYSICS, 2020, 643
  • [47] Light Deflection under the Gravitational Field of Jupiter-Testing General Relativity
    Li, Yingjie
    Xu, Ye
    Li, JingJing
    Wu, Yuanwei
    Bian, Shaibo
    Lin, ZeHao
    Yang, WenJin
    Hao, Chaojie
    Liu, DeJian
    ASTROPHYSICAL JOURNAL, 2022, 925 (01):
  • [48] Testing the Gravitational Redshift with Atomic Gravimeters?
    Wolf, Peter
    Blanchet, Luc
    Borde, Christian J.
    Reynaud, Serge
    Salomon, Christophe
    Cohen-Tannoudji, Claude
    2011 JOINT CONFERENCE OF THE IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM/EUROPEAN FREQUENCY AND TIME FORUM PROCEEDINGS, 2011, : 1012 - 1016
  • [49] Comparing Bayes factors and hierarchical inference for testing general relativity with gravitational waves
    Isi, Maximiliano
    Farr, Will M.
    Chatziioannou, Katerina
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [50] Measuring gravitational redshifts in galaxy clusters
    Kaiser, Nick
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (02) : 1278 - 1286