Integrative Metabolome and Transcriptome Analyses Reveal the Pericarp Coloration Mechanisms in Bitter Melon (Momordica charantia L.)

被引:2
|
作者
Yang, Liang [1 ,2 ,3 ,4 ]
Li, Zhi [1 ,2 ,3 ,4 ]
Li, Ju [1 ,2 ,3 ,4 ]
Ma, Yanqin [1 ,2 ,3 ,4 ]
Miao, Mingjun [1 ,2 ,3 ,4 ]
Long, Haicheng [1 ,2 ,3 ]
Zhou, Yujie [1 ,2 ,3 ]
Chang, Wei [2 ,3 ,4 ]
机构
[1] Sichuan Acad Agr Sci, Hort Res Inst, Chengdu 610066, Peoples R China
[2] Vegetable Germplasm Innovat & Variety Improvement, Chengdu 610066, Peoples R China
[3] Minist Agr & Rural Affairs P R China, Key Lab Hort Crops Biol & Germplasm Enhancement So, Chengdu 610066, Peoples R China
[4] Sichuan Prov Engn Technol Res Ctr Vegetables, Chengdu 611934, Peoples R China
关键词
bitter gourd; fruit color; metabolome; transcriptome; anthocyanin; candidate genes; FRUIT; CAROTENOIDS; BIOSYNTHESIS; PIGMENTS;
D O I
10.3390/horticulturae10030291
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Pericarp colors are critical agronomic traits that affect the quality and economic values of fruits. Although a diversity of bitter melon pericarp (BMP) colors is available, the fruit pigmentation mechanisms remain elusive. Hence, this study aimed to unveil the key metabolites and molecular mechanisms underlying variation in BMP coloration through integrative metabolomics and transcriptomics analyses of four differently colored genotypes, including K1102 (grayish orange), 262 (grayish yellow), 1392 (very soft green), and K115 (dark grayish cyan). The four BMPs exhibited significant metabolite profile and transcriptional differences, as over 112 and 1865 DAMs (differentially accumulated metabolites) and DEGs (differentially expressed genes), respectively, were identified. The variation in the content of six anthocyanins, including malvidin 3-O-glucoside, petunidin 3-O-glucoside, rosinidin O-hexoside, cyanidin, cyanidin 3-p-hydroxybenzoylsophoroside-5-glucoside, and pelargonidin 3-O-beta-D-glucoside, might be the major driving factor of BMP color changes. Notably, malvidin 3-O-glucoside, rosinidin O-hexoside, and petunidin 3-O-glucoside are the dominant pigments in K115, while carotenoids and other flavonoids may contribute to other colors. Candidate flavonoid structural and regulatory (MYBs, NACs, MADSs, bHLHs, and bZIPs) genes were identified. Of them, gene13201 (anthocyanin reductase), gene8173 (polyphenol oxidase), gene2136 (NAC43), gene19593 (NAC104), and gene15171 (tetrapyrrole-binding protein) might play essential roles in K115 pericarp color development. Our findings deepen our understanding of BMP pigmentation and provide fundamental resources for higher-valued bitter melon breeding perspectives.<br />
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.)
    Jin, Wei
    Zhang, Min
    Shi, Weifeng
    DRYING TECHNOLOGY, 2019, 37 (03) : 387 - 396
  • [32] Development and characterization of functional electrohydrodynamic particles and fibers using bitter melon (Momordica charantia L.) extract
    Besir, Aysegul
    Kahyaoglu, Talip
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2020, 14 (04) : 2333 - 2342
  • [33] Development and characterization of functional electrohydrodynamic particles and fibers using bitter melon (Momordica charantia L.) extract
    Ayşegül Beşir
    Talip Kahyaoglu
    Journal of Food Measurement and Characterization, 2020, 14 : 2333 - 2342
  • [34] Bio-active compounds of bitter melon genotypes (Momordica charantia L.) in relation to their physiological functions
    Islam, Shahidul
    Jalaluddin, Mohammad
    Hettiarachchy, Navam S.
    FUNCTIONAL FOODS IN HEALTH AND DISEASE, 2011, 1 (02): : 61 - 74
  • [35] Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash (Zanthoxylum L.)
    Zheng, Tao
    Zhang, Qun
    Su, Ke-xing
    Liu, Shu-ming
    FOOD CHEMISTRY: MOLECULAR SCIENCES, 2020, 1
  • [36] Genetic divergence study in bitter gourd (Momordica charantia L.)
    Nithinkumar, K. R.
    Kumar, J. S. A.
    Varalakshmi, B.
    Sadanand, K.
    Mushrif, S. K.
    Ramachandra, R. K.
    Prashanth, S. J.
    JOURNAL OF HORTICULTURAL SCIENCES, 2021, 16 (02): : 193 - 198
  • [37] NUTRITIVE AND ANTIDIABETIC BENEFITS OF MOMORDICA CHARANTIA L. (BITTER GOURD)
    Kumar, Narendra
    Khurana, S. M. Paul
    INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2016, 3 (12): : 1512 - 1520
  • [38] PRINCIPAL COMPONENT ANALYSIS IN BITTER GOURD (MOMORDICA CHARANTIA L.)
    Jatav, Vinod
    Singh, D. K.
    Singh, N. K.
    Panchbhaiya, A.
    BANGLADESH JOURNAL OF BOTANY, 2022, 51 (01): : 1 - 7
  • [39] The chloroplast genome sequence of Momordica charantia L. (bitter gourd)
    Rasheed, Sadia
    Zaidi, Sahar
    Azim, M. Kamran
    GENE REPORTS, 2020, 21
  • [40] Fluorescence Spectra of Seeds of the Bitter Gourd (Momordica charantia L.)
    P. R. Borthakur
    A. Gohain Barua
    National Academy Science Letters, 2012, 35 : 45 - 47