Multi-functionalized full-interface integrated engineering towards highly reversible Li-rich Mn-based cathode

被引:11
|
作者
Li, Saichao [1 ]
Liu, Yuanyuan [1 ]
Zhang, Yinggan [1 ]
Gao, Guiyang [1 ]
Guo, Weibin [1 ]
Xu, Qixiang [1 ]
Wu, Hualong [1 ]
Fan, Mengjian [1 ]
Wang, Laisen [1 ]
Sa, Baisheng [3 ]
Lin, Jie [1 ]
Peng, Dong-Liang [1 ]
Xie, Qingshui [1 ,2 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Coll Mat,Tan Kah Kee Innovat Lab, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[3] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich Mn-based cathode; Surface atomic rearrangement; Oxygen vacancy; Full -interface modification; Cycling stability; ANIONIC REDOX ACTIVITY; OXYGEN ACTIVITY; HIGH-VOLTAGE; LITHIUM; PERFORMANCE; TEMPERATURE; ELECTROLYTE; BATTERIES; EVOLUTION; DISORDER;
D O I
10.1016/j.ensm.2024.103241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich Mn-based materials (LRMs) with high energy density are promising cathode candidates for next-generation lithium-ion batteries. However, the inevitable oxygen release and electrolyte decomposition would stimulate successive interface side reactions and structure degradation, leading to rapid capacity decay. In addition, the terrible reaction kinetics of LRMs is not conducive to rate capability and low-temperature performance. Herein, a multi-functionalized full-interface integrated engineering is put forward to introduce multifunctional modification layer (including surface S, N co-doped carbon layer, near-surface gradient oxygen vacancies and the resultantly induced atomic rearrangement) at the interface of both the secondary particles and inner primary particles of LRMs. The oxygen vacancies and induced intralayer Li/Mn disorder can suppress the oxygen release. And the induced lattice-matched rock-salt phase can improve the interface structure stability. Meanwhile, the S, N co-doped carbon layer can isolate LRMs and electrolyte, alleviating the decomposition of electrolyte and the resulting structural damage to LRMs. In addition, Li+ diffusion kinetic and electric conductivity are enhanced due to oxygen vacancies and S, N co-doped carbon layer. Thus, a reliable LiF-rich cathode electrolyte interphase (CEI) film is formed, which can further reduce the interfacial side reactions upon cycling, ultimately enhancing the comprehensive electrochemical performance of LRMs. Specifically, the modified sample (HLRM) exhibits enhanced long-term cycle stability, with capacity retention of 94.8 % and 86.6 % after 100 cycles at 0.2 C and 500 cycles at 1 C, respectively. In addition, HLRM delivers elevated specific capacity and cyclic stability both at high (55 degrees C) and low (-15 degrees C) temperature. This work offers a new idea to improve the comprehensive electrochemical performance of LRMs by multi-functionalized full-interface integrated modification engineering.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CePO4/Spinel dual encapsulating on Li-rich Mn-based cathode with novel cycling stability
    Wang, Yanyan
    Yu, Wenhua
    Zhao, Liuyang
    Li, Hongyi
    Liu, Xinpeng
    Wu, Aimin
    Li, Aikui
    Dong, Xufeng
    Huang, Hao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 953
  • [32] A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials
    Guo, Weibin
    Zhang, Chenying
    Zhang, Yinggan
    Lin, Liang
    He, Wei
    Xie, Qingshui
    Sa, Baisheng
    Wang, Laisen
    Peng, Dong-Liang
    ADVANCED MATERIALS, 2021, 33 (38)
  • [33] Advances in Li-rich Mn-based Layered Cathode Materials Enable High-performance Li-ion Batteries
    QIU Bao
    Bulletin of the Chinese Academy of Sciences, 2022, 36 (04) : 240 - 241
  • [34] Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations
    Gao, Yurui
    Wang, Xuefeng
    Ma, Jun
    Wang, Zhaoxiang
    Chen, Liquan
    CHEMISTRY OF MATERIALS, 2015, 27 (09) : 3456 - 3461
  • [35] Effect of Na Doping on Electrochemical Properties of Cobalt-Free Li-Rich Mn-Based Cathode Materials
    Li Weiwei
    Yao Dongjia
    Yao Lu
    Si Jiangju
    Yang Jie
    Lang Wuke
    INTEGRATED FERROELECTRICS, 2020, 210 (01) : 1 - 5
  • [36] Harmonious Dual-Riveting Interface Induced from Niobium Oxides Coating Toward Superior Stability of Li-Rich Mn-Based Cathode
    Zhu, Aipeng
    Wu, Jinhua
    Wang, Boya
    Zhou, Jinwei
    Zhang, Yin
    Guo, Yi
    Wu, Kaipeng
    Wu, Hao
    Wang, Qian
    Zhang, Yun
    ACS Applied Materials and Interfaces, 2021, 13 (51): : 61248 - 61257
  • [37] Impact of thermal gas treatment on the surface modification of Li-rich Mn-based cathode materials for Li-ion batteries
    Mellin, Maximilian
    Liang, Zhili
    Sclar, Hadar
    Maiti, Sandipan
    Pis, Igor
    Nappini, Silvia
    Magnano, Elena
    Bondino, Federica
    Napal, Ilargi
    Winkler, Robert
    Hausbrand, Rene
    Hofmann, Jan P.
    Alff, Lambert
    Markovsky, Boris
    Aurbach, Doron
    Jaegermann, Wolfram
    Cherkashinin, Gennady
    MATERIALS ADVANCES, 2023, 4 (17): : 3746 - 3758
  • [38] Harmonious Dual-Riveting Interface Induced from Niobium Oxides Coating Toward Superior Stability of Li-Rich Mn-Based Cathode
    Zhu, Aipeng
    Wu, Jinhua
    Wang, Boya
    Zhou, Jinwei
    Zhang, Yin
    Guo, Yi
    Wu, Kaipeng
    Wu, Hao
    Wang, Qian
    Zhang, Yun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (51) : 61248 - 61257
  • [39] Dual-element substitution induced integrated defect structure to suppress voltage decay and capacity fading of Li-rich Mn-based cathode
    Zhang, Zhigui
    Kou, Pengzu
    Chen, Yu
    Zheng, Runguo
    Wang, Zhiyuan
    Sun, Hongyu
    Liu, Yanguo
    Wang, Dan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 377 - 386
  • [40] Fast Charge-Transport Interface on Primary Particles Boosts High- Rate Performance of Li-Rich Mn-Based Cathode Materials
    Cui, Shao-Lun
    Xiao, Zhen-Xue
    Cui, Bai-Chuan
    Liu, Sheng
    Gao, Xue-Ping
    Li, Guo-Ran
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) : 13195 - 13204