Multi-functionalized full-interface integrated engineering towards highly reversible Li-rich Mn-based cathode

被引:11
|
作者
Li, Saichao [1 ]
Liu, Yuanyuan [1 ]
Zhang, Yinggan [1 ]
Gao, Guiyang [1 ]
Guo, Weibin [1 ]
Xu, Qixiang [1 ]
Wu, Hualong [1 ]
Fan, Mengjian [1 ]
Wang, Laisen [1 ]
Sa, Baisheng [3 ]
Lin, Jie [1 ]
Peng, Dong-Liang [1 ]
Xie, Qingshui [1 ,2 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Coll Mat,Tan Kah Kee Innovat Lab, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[3] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich Mn-based cathode; Surface atomic rearrangement; Oxygen vacancy; Full -interface modification; Cycling stability; ANIONIC REDOX ACTIVITY; OXYGEN ACTIVITY; HIGH-VOLTAGE; LITHIUM; PERFORMANCE; TEMPERATURE; ELECTROLYTE; BATTERIES; EVOLUTION; DISORDER;
D O I
10.1016/j.ensm.2024.103241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich Mn-based materials (LRMs) with high energy density are promising cathode candidates for next-generation lithium-ion batteries. However, the inevitable oxygen release and electrolyte decomposition would stimulate successive interface side reactions and structure degradation, leading to rapid capacity decay. In addition, the terrible reaction kinetics of LRMs is not conducive to rate capability and low-temperature performance. Herein, a multi-functionalized full-interface integrated engineering is put forward to introduce multifunctional modification layer (including surface S, N co-doped carbon layer, near-surface gradient oxygen vacancies and the resultantly induced atomic rearrangement) at the interface of both the secondary particles and inner primary particles of LRMs. The oxygen vacancies and induced intralayer Li/Mn disorder can suppress the oxygen release. And the induced lattice-matched rock-salt phase can improve the interface structure stability. Meanwhile, the S, N co-doped carbon layer can isolate LRMs and electrolyte, alleviating the decomposition of electrolyte and the resulting structural damage to LRMs. In addition, Li+ diffusion kinetic and electric conductivity are enhanced due to oxygen vacancies and S, N co-doped carbon layer. Thus, a reliable LiF-rich cathode electrolyte interphase (CEI) film is formed, which can further reduce the interfacial side reactions upon cycling, ultimately enhancing the comprehensive electrochemical performance of LRMs. Specifically, the modified sample (HLRM) exhibits enhanced long-term cycle stability, with capacity retention of 94.8 % and 86.6 % after 100 cycles at 0.2 C and 500 cycles at 1 C, respectively. In addition, HLRM delivers elevated specific capacity and cyclic stability both at high (55 degrees C) and low (-15 degrees C) temperature. This work offers a new idea to improve the comprehensive electrochemical performance of LRMs by multi-functionalized full-interface integrated modification engineering.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Enhancing cycling stability in Li-rich Mn-based cathode materials by solid-liquid-gas integrated interface engineering
    Guo, Weibin
    Zhang, Yinggan
    Lin, Liang
    He, Wei
    Zheng, Hongfei
    Lin, Jie
    Sa, Baisheng
    Wei, Qiulong
    Wang, Laisen
    Xie, Qingshui
    Peng, Dong-Liang
    NANO ENERGY, 2022, 97
  • [2] Building interface bonding and shield for stable Li-rich Mn-based oxide cathode
    Chen, Jun
    Chen, Hongyi
    Mei, Yu
    Gao, Jinqiang
    Dai, Alvin
    Tian, Ye
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Banks, Craig E.
    Liu, Tongchao
    Amine, Khalil
    Ji, Xiaobo
    ENERGY STORAGE MATERIALS, 2022, 52 : 736 - 745
  • [3] Multi-dimensional correlation of layered Li-rich Mn-based cathode materials
    Yang, Zhe
    Zheng, Chaoliang
    Wei, Zhicheng
    Zhong, Jianjian
    Liu, Huirong
    Feng, Jiameng
    Li, Jianling
    Kang, Feiyu
    ENERGY MATERIALS, 2022, 2 (01):
  • [4] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Kun Zhang
    Biao Li
    Yuxuan Zuo
    Jin Song
    Huaifang Shang
    Fanghua Ning
    Dingguo Xia
    Electrochemical Energy Reviews, 2019, 2 : 606 - 623
  • [5] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Zhang, Kun
    Li, Biao
    Zuo, Yuxuan
    Song, Jin
    Shang, Huaifang
    Ning, Fanghua
    Xia, Dingguo
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 606 - 623
  • [6] Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective
    Guo, Weibin
    Weng, Zhangzhao
    Zhou, Chongyang
    Han, Min
    Shi, Naien
    Xie, Qingshui
    Peng, Dong-Liang
    INORGANICS, 2024, 12 (01)
  • [7] LiF-Rich Cathode Electrolyte Interphases Homogenizing Li+ Fluxes toward Stable Interface in Li-Rich Mn-Based Cathodes
    Jiang, Qinting
    Li, Ming
    Li, Jun
    Wang, Jingjing
    Zhang, Gaini
    Wang, Jing
    Zuo, Jiaxuan
    Cao, Guiqiang
    Duan, Ruixian
    Hao, Youchen
    Li, Mengjiao
    Yang, Zihao
    Yang, Haofei
    Bai, Mengxin
    Song, Xuexia
    Xi, Yukun
    Li, Wenbin
    Sun, Xueliang
    Li, Xifei
    ADVANCED MATERIALS, 2025,
  • [8] Surface Engineering and Trace Cobalt Doping Suppress Overall Li/Ni Mixing of Li-rich Mn-based Cathode Materials
    Chen, Junxin
    Huang, Zhe
    Zeng, Weihao
    Ma, Jingjing
    Cao, Fei
    Wang, Tingting
    Tian, Weixi
    Mu, Shichun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6649 - 6657
  • [9] Regulation of Interfacial Lattice Oxygen Activity by Full-Surface Modification Engineering towards Long Cycling Stability for Co-Free Li-Rich Mn-Based Cathode
    Guo, Weibin
    Zhang, Yinggan
    Lin, Liang
    Liu, Yuanyuan
    Fan, Mengjian
    Gao, Guiyang
    Wang, Shihao
    Sa, Baisheng
    Lin, Jie
    Luo, Qing
    Qu, Baihua
    Wang, Laisen
    Shi, Ji
    Xie, Qingshui
    Peng, Dong-Liang
    SMALL, 2023, 19 (21)
  • [10] A universal strategy towards high-rate and ultralong-life of Li-rich Mn-based cathode materials
    Fu, Wenbo
    Lei, Tongxing
    Cao, Bin
    Shi, Xiuling
    Zhang, Qi
    Ding, Zhiyu
    Chen, Lina
    Wu, Junwei
    JOURNAL OF POWER SOURCES, 2024, 618