OPTIMAL GYROSCOPIC STABILIZATION OF VIBRATIONAL SYSTEM: ALGEBRAIC APPROACH

被引:0
|
作者
Chekhonadskikh, A. V. [1 ]
机构
[1] Novosibirsk State Tech Univ, K Marx av 20, Novosibirsk 630073, Russia
关键词
vibrational system; gyroscopic stabilizer; low order control; rightmost poles; relative stability; root polynomial;
D O I
10.33048/semi.2024.21.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with LTI vibrational systems with positive definite stiffness matrix K and symmetric damping matrix D. Gyroscopic stabilization means the existence of gyroscopic forces with a skew-symmetric matrix G, such that a closed loop system with damping matrix D+G is asymptotically stable. The feature of characteristic polynomial in the case predetermines such stabilization as a low order control design. Assuming the necessary condition of gyroscopic stabilization is fulfilled, we pose the problem of achieving relative stability maximum using a stabilizer G. The stability maximum value is determined by a matrix D trace, but its reachability depends on the coincidence of all pole real parts with the corresponding minimal value, i.e. equality of characteristic and root polynomials. We illustrate a root polynomial technique application to optimal gyroscopic stabilizer design by examples of dimension 3-5.
引用
收藏
页码:70 / 80
页数:11
相关论文
共 50 条
  • [41] Gyroscopic stabilization of indefinite damped systems
    Kliem, W
    Muller, PC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S163 - S164
  • [42] Gyroscopic stabilization in the presence of nonconservative forces
    Kirillov, O. N.
    DOKLADY MATHEMATICS, 2007, 76 (02) : 780 - 785
  • [43] QUESTION OF STABILITY OF GYROSCOPIC STABILIZATION SYSTEMS
    KUZMINA, LK
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1972, 36 (04): : 732 - &
  • [44] Gyroscopic stabilization of the internal kink mode
    Waelbroeck, FL
    PHYSICS OF PLASMAS, 1996, 3 (03) : 1047 - 1053
  • [46] Gyroscopic stabilization of passive magnetic levitation
    Genta, G
    Delprete, C
    Rondano, D
    MECCANICA, 1999, 34 (06) : 411 - 424
  • [47] Gyroscopic Stabilization of Passive Magnetic Levitation
    G. Genta
    C. Delprete
    D. Rondano
    Meccanica, 1999, 34 : 411 - 424
  • [48] Optimal stabilization of dynamic system
    Gabasov, R.
    Kirillova, F.M.
    Doklady Akademii Nauk, 2003, 388 (03) : 316 - 320
  • [49] Optimal control of the gyroscopic effects
    Tamisier, Vincent
    2006 IEEE International Symposium on Industrial Electronics, Vols 1-7, 2006, : 2556 - 2561
  • [50] Optimal laser control of molecular photoassociation along with vibrational stabilization
    de Lima, Emanuel F.
    Ho, Tak-San
    Rabitz, Herschel
    CHEMICAL PHYSICS LETTERS, 2011, 501 (4-6) : 267 - 272