Non-K3 Weierstrass numerical semigroups

被引:0
|
作者
Komeda, Jiryo [1 ]
Mase, Makiko [2 ]
机构
[1] Kanagawa Inst Technol, Ctr Basic Educ & Integrated Learning, Dept Math, Atsugi, Kanagawa 2430292, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
Weierstrass semigroups; Numerical semigroups; Double covers of curves; Non-K3 numerical semigroups; DOUBLE COVERINGS; CURVES; POINTS; GENUS;
D O I
10.1007/s00233-024-10406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the result of Reid (J Lond Math Soc 13:454-458, 1976), namely, we prove that a curve of genus >= g2+4g+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqq g<^>2+4g+6$$\end{document} having a double cover of a hyperelliptic curve of genus g >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\geqq 2$$\end{document} does not lie as a non-singular curve on any K3 surface. Applying this result we construct non-K3 Weierstrass numerical semigroups. A numerical semigroup H is said to be Weierstrass if there exists a pointed non-singular curve (C, P) such that H consists of non-negative integers which are the pole orders at P of a rational function on C having a pole only at P. We call the numerical semigroup K3 if we can take the curve C as a curve on some K3 surface. A non-K3 numerical semigroup means that it cannot be attained by a pointed non-singular curve on any K3 surface. We also give infinite sequences of non-K3 Weierstrass numerical semigroups.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 50 条
  • [41] On the Weierstrass semigroups of n points of a smooth curve: an addendum
    Ballico, E.
    ARCHIV DER MATHEMATIK, 2015, 104 (04) : 341 - 342
  • [42] Gorenstein curves with quasi-symmetric Weierstrass semigroups
    Oliveira, G
    Stohr, KO
    GEOMETRIAE DEDICATA, 1997, 67 (01) : 45 - 63
  • [43] WEIERSTRASS SEMIGROUPS IN AN ASYMPTOTICALLY OPTIMAL TOWER OF FUNCTION FIELDS
    Almeida Filho, Gilberto b.
    Tafazolian, Saeed
    Torres, Fernando
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [44] On Weierstrass semigroups of double coverings of genus three curves
    Komeda, Jiryo
    SEMIGROUP FORUM, 2011, 83 (03) : 479 - 488
  • [45] On Weierstrass semigroups of double covering of genus two curves
    Oliveira, Gilvan
    Pimentel, Francisco L. R.
    SEMIGROUP FORUM, 2008, 77 (02) : 152 - 162
  • [46] On Weierstrass semigroups of double covering of genus two curves
    Gilvan Oliveira
    Francisco L. R. Pimentel
    Semigroup Forum, 2008, 77 : 152 - 162
  • [47] Weierstrass semigroups, pure gaps and codes on function fields
    Alonso S. Castellanos
    Erik A. R. Mendoza
    Luciane Quoos
    Designs, Codes and Cryptography, 2024, 92 : 1219 - 1242
  • [48] Weierstrass Semigroups and Codes from a Quotient of the Hermitian Curve
    Gretchen L. Matthews
    Designs, Codes and Cryptography, 2005, 37 : 473 - 492
  • [49] THE WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS OF GENUS TWO CURVES
    Harui, Takeshi
    Komeda, Jiryo
    Ohbuchi, Akira
    TSUKUBA JOURNAL OF MATHEMATICS, 2015, 38 (02) : 201 - 206
  • [50] WEIERSTRASS SEMIGROUPS OF PAIRS ON H-HYPERELLIPTIC CURVES
    Kang, Eunju
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2015, 22 (04): : 403 - 412