Non-K3 Weierstrass numerical semigroups

被引:0
|
作者
Komeda, Jiryo [1 ]
Mase, Makiko [2 ]
机构
[1] Kanagawa Inst Technol, Ctr Basic Educ & Integrated Learning, Dept Math, Atsugi, Kanagawa 2430292, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
Weierstrass semigroups; Numerical semigroups; Double covers of curves; Non-K3 numerical semigroups; DOUBLE COVERINGS; CURVES; POINTS; GENUS;
D O I
10.1007/s00233-024-10406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the result of Reid (J Lond Math Soc 13:454-458, 1976), namely, we prove that a curve of genus >= g2+4g+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqq g<^>2+4g+6$$\end{document} having a double cover of a hyperelliptic curve of genus g >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\geqq 2$$\end{document} does not lie as a non-singular curve on any K3 surface. Applying this result we construct non-K3 Weierstrass numerical semigroups. A numerical semigroup H is said to be Weierstrass if there exists a pointed non-singular curve (C, P) such that H consists of non-negative integers which are the pole orders at P of a rational function on C having a pole only at P. We call the numerical semigroup K3 if we can take the curve C as a curve on some K3 surface. A non-K3 numerical semigroup means that it cannot be attained by a pointed non-singular curve on any K3 surface. We also give infinite sequences of non-K3 Weierstrass numerical semigroups.
引用
收藏
页码:221 / 257
页数:37
相关论文
共 50 条
  • [1] Non-K3 Weierstrass numerical semigroups
    Jiryo Komeda
    Makiko Mase
    Semigroup Forum, 2024, 108 : 145 - 164
  • [2] Non-Weierstrass numerical semigroups
    Komeda, J
    SEMIGROUP FORUM, 1998, 57 (02) : 157 - 185
  • [3] Remarks on non-Weierstrass numerical semigroups
    Komeda, J
    ALGEBRAS AND COMBINATORICS, 1999, : 313 - 319
  • [4] REALIZING NUMERICAL SEMIGROUPS AS WEIERSTRASS SEMIGROUPS: A COMPUTATIONAL APPROACH
    Pimentel, Francisco L. R.
    Oliveira, Gilvan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2006, 6 (03): : 445 - 454
  • [5] Infinite sequences of almost symmetric non-Weierstrass numerical semigroups
    Komeda, Jiryo
    SEMIGROUP FORUM, 2021, 103 (03) : 935 - 952
  • [6] Infinite sequences of almost symmetric non-Weierstrass numerical semigroups
    Jiryo Komeda
    Semigroup Forum, 2021, 103 : 935 - 952
  • [7] Non-cyclic Weierstrass semigroups
    Kim, SJ
    Komeda, J
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 993 - 1005
  • [8] On reducible non-Weierstrass semigroups
    Ignacio Garcia-Garcia, Juan
    Marin-Aragon, Daniel
    Torres, Fernando
    Vigneron-Tenorio, Alberto
    OPEN MATHEMATICS, 2021, 19 (01): : 1134 - 1144
  • [9] Numerical semigroups which cannot be realized as semigroups of Galois Weierstrass points
    Kim, SJ
    Komeda, J
    ARCHIV DER MATHEMATIK, 2001, 76 (04) : 265 - 273
  • [10] Numerical semigroups which cannot be realized as semigroups of Galois Weierstrass points
    S. J. Kim
    J. Komeda
    Archiv der Mathematik, 2001, 76 : 265 - 273