Toward incompatible quantum limits on multiparameter estimation

被引:12
|
作者
Xia, Binke [1 ]
Huang, Jingzheng [1 ,2 ,3 ]
Li, Hongjing [1 ,2 ,3 ]
Wang, Han [1 ]
Zeng, Guihua [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Quantum Sensing & Informat Proc, Sch Sensing Sci & Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
UNCERTAINTY; ERROR;
D O I
10.1038/s41467-023-36661-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving the ultimate precisions formultiple parameters simultaneously is an outstanding challenge in quantum physics, because the optimal measurements for incompatible parameters cannot be performed jointly due to the Heisenberg uncertainty principle. In this work, a criterion proposed for multiparameter estimation provides a possible way to beat this curse. According to this criterion, it is possible to mitigate the influence of incompatibility meanwhile improve the ultimate precisions by increasing the variances of the parameter generators simultaneously. For demonstration, a scheme involving high-order Hermite-Gaussian states as probes is proposed for estimating the spatial displacement and angular tilt of light at the same time, and precisions up to 1.45 nm and 4.08 nrad are achieved in experiment simultaneously. Consequently, our findings provide a deeper insight into the role of Heisenberg uncertainty principle in multiparameter estimation, and contribute in several ways to the applications of quantum metrology.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Quantum multiparameter estimation and metrology-preface Preface
    Datta, Animesh
    Demkowicz-Dobrzanski, Rafal
    Liu, Jing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (46)
  • [22] Optimal measurements for quantum multiparameter estimation with general states
    Yang, Jing
    Pang, Shengshi
    Zhou, Yiyu
    Jordan, Andrew N.
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [23] Quantum multiparameter estimation enhanced by a topological phase transition
    Yang, Yu
    Yuan, Haidong
    Li, Fuli
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [24] Quantum-enhanced multiparameter estimation in multiarm interferometers
    Mario A. Ciampini
    Nicolò Spagnolo
    Chiara Vitelli
    Luca Pezzè
    Augusto Smerzi
    Fabio Sciarrino
    Scientific Reports, 6
  • [25] Quantum-enhanced multiparameter estimation and compressed sensing of a field
    Baamara, Youcef
    Gessner, Manuel
    Sinatra, Alice
    SCIPOST PHYSICS, 2023, 14 (03):
  • [26] Variational quantum metrology for multiparameter estimation under dephasing noise
    Trung Kien Le
    Hung Q. Nguyen
    Le Bin Ho
    Scientific Reports, 13
  • [27] SEQUENTIAL OPTIMIZATION APPROACH TO A MULTIPARAMETER QUANTUM ESTIMATION PROBLEM.
    Ilic, Drago
    Journal Water Pollution Control Federation, 1980, : 269 - 273
  • [28] Incorporating Heisenberg's Uncertainty Principle into Quantum Multiparameter Estimation
    Lu, Xiao-Ming
    Wang, Xiaoguang
    PHYSICAL REVIEW LETTERS, 2021, 126 (12)
  • [29] RLD Fisher information bound for multiparameter estimation of quantum channels
    Katariya, Vishal
    Wilde, Mark M.
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [30] Variational quantum metrology for multiparameter estimation under dephasing noise
    Le, Trung Kien
    Nguyen, Hung Q.
    Bin Ho, Le
    SCIENTIFIC REPORTS, 2023, 13 (01)