Toward incompatible quantum limits on multiparameter estimation

被引:12
|
作者
Xia, Binke [1 ]
Huang, Jingzheng [1 ,2 ,3 ]
Li, Hongjing [1 ,2 ,3 ]
Wang, Han [1 ]
Zeng, Guihua [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Quantum Sensing & Informat Proc, Sch Sensing Sci & Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
UNCERTAINTY; ERROR;
D O I
10.1038/s41467-023-36661-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving the ultimate precisions formultiple parameters simultaneously is an outstanding challenge in quantum physics, because the optimal measurements for incompatible parameters cannot be performed jointly due to the Heisenberg uncertainty principle. In this work, a criterion proposed for multiparameter estimation provides a possible way to beat this curse. According to this criterion, it is possible to mitigate the influence of incompatibility meanwhile improve the ultimate precisions by increasing the variances of the parameter generators simultaneously. For demonstration, a scheme involving high-order Hermite-Gaussian states as probes is proposed for estimating the spatial displacement and angular tilt of light at the same time, and precisions up to 1.45 nm and 4.08 nrad are achieved in experiment simultaneously. Consequently, our findings provide a deeper insight into the role of Heisenberg uncertainty principle in multiparameter estimation, and contribute in several ways to the applications of quantum metrology.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Toward incompatible quantum limits on multiparameter estimation
    Binke Xia
    Jingzheng Huang
    Hongjing Li
    Han Wang
    Guihua Zeng
    Nature Communications, 14 (1)
  • [2] Simultaneous measurement of multiple incompatible observables and tradeoff in multiparameter quantum estimation
    Chen, Hongzhen
    Wang, Lingna
    Yuan, Haidong
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [3] Intrinsic Sensitivity Limits for Multiparameter Quantum Metrology
    Goldberg, Aaron Z.
    Sanchez-Soto, Luis L.
    Ferretti, Hugo
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [4] Multiparameter Estimation in Networked Quantum Sensors
    Proctor, Timothy J.
    Knott, Paul A.
    Dunningham, Jacob A.
    PHYSICAL REVIEW LETTERS, 2018, 120 (08)
  • [5] Multiparameter quantum estimation theory in quantum Gaussian states
    Bakmou, Lahcen
    Daoud, Mohammed
    Laamara, Rachid ahl
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [6] Multiparameter quantum estimation under dephasing noise
    Ho, Le Bin
    Hakoshima, Hideaki
    Matsuzaki, Yuichiro
    Matsuzaki, Masayuki
    Kondo, Yasushi
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [7] Quantum Fisher information matrix and multiparameter estimation
    Liu, Jing
    Yuan, Haidong
    Lu, Xiao-Ming
    Wang, Xiaoguang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (02)
  • [8] Deep reinforcement learning for quantum multiparameter estimation
    Valeria Cimini
    Mauro Valeri
    Emanuele Polino
    Simone Piacentini
    Francesco Ceccarelli
    Giacomo Corrielli
    Nicolò Spagnolo
    Roberto Osellame
    Fabio Sciarrino
    Advanced Photonics, 2023, 5 (01) : 63 - 75
  • [9] Control-enhanced multiparameter quantum estimation
    Liu, Jing
    Yuan, Haidong
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [10] Deep reinforcement learning for quantum multiparameter estimation
    Cimini, Valeria
    Valeri, Mauro
    Polino, Emanuele
    Piacentini, Simone
    Ceccarelli, Francesco
    Corrielli, Giacomo
    Spagnolo, Nicolo
    Osellame, Roberto
    Sciarrino, Fabio
    ADVANCED PHOTONICS, 2023, 5 (01):