Physics-Based Decoding Improves Magnetic Resonance Fingerprinting

被引:1
|
作者
Heo, Juyeon [1 ]
Song, Pingfan [1 ]
Liu, Weiyang [1 ]
Weller, Adrian [1 ,2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会;
关键词
Magnetic Resonance Fingerprinting; Deep Neural Network; Physics-informed learning; Generalizability; Bloch equations; SLIDING-WINDOW; FRAMEWORK;
D O I
10.1007/978-3-031-43895-0_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic Resonance Fingerprinting (MRF) is a promising approach for fast Quantitative Magnetic Resonance Imaging (QMRI). However, existing MRF methods suffer from slow imaging speeds and poor generalization performance on radio frequency pulse sequences generated in various scenarios. To address these issues, we propose a novel MRI physics-informed regularization for MRF. The proposed approach adopts a supervised encoder-decoder framework, where the encoder performs the main task, i.e. predicting the target tissue properties from input magnetic responses, and the decoder servers as a regularization via reconstructing the inputs from the estimated tissue properties using a Bloch-equation based MRF physics model. The physics-based decoder improves the generalization performance and uniform stability by a considerable margin in practical out-of-distribution settings. Extensive experiments verified the effectiveness of the proposed approach and achieved state-of-the-art performance on tissue property estimation.
引用
收藏
页码:446 / 456
页数:11
相关论文
共 50 条
  • [31] MODEL-BASED ITERATIVE RECONSTRUCTION FOR MAGNETIC RESONANCE FINGERPRINTING
    Zhao, Bo
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3392 - 3396
  • [32] Physics-based simulation ontology: an ontology to support modelling and reuse of data for physics-based simulation
    Cheong, Hyunmin
    Butscher, Adrian
    JOURNAL OF ENGINEERING DESIGN, 2019, 30 (10-12) : 655 - 687
  • [33] Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization
    Jordan, Stephen P.
    Hu, Siyuan
    Rozada, Ignacio
    McGivney, Debra F.
    Boyacioglu, Rasim
    Jacob, Darryl C.
    Huang, Sherry
    Beverland, Michael
    Katzgraber, Helmut G.
    Troyer, Matthias
    Griswold, Mark A.
    Ma, Dan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (40)
  • [34] Magnetization transfer in magnetic resonance fingerprinting
    Hilbert, Tom
    Xia, Ding
    Block, Kai Tobias
    Yu, Zidan
    Lattanzi, Riccardo
    Sodickson, Daniel K.
    Kober, Tobias
    Cloos, Martijn A.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (01) : 128 - 141
  • [35] Magnetic resonance fingerprinting: a technical review
    Mehta, Bhairav Bipin
    Coppo, Simone
    McGivney, Debra Frances
    Hamilton, Jesse Ian
    Chen, Yong
    Jiang, Yun
    Ma, Dan
    Seiberlich, Nicole
    Gulani, Vikas
    Griswold, Mark Alan
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) : 25 - 46
  • [36] DEEP UNROLLING FOR MAGNETIC RESONANCE FINGERPRINTING
    Chen, Dongdong
    Davies, Mike E.
    Golbabaee, Mohammad
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [37] Magnetic Resonance Fingerprinting of the Pediatric Brain
    Hung, Sheng-Che
    Chen, Yong
    Yap, Pew-Thian
    Lin, Weili
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2021, 29 (04) : 605 - 616
  • [38] Magnetic resonance fingerprinting in multiple sclerosis
    Ontaneda, Daniel
    Gulani, Vikas
    Deshmane, Anagha
    Shah, Amisha
    Guruprakash, Deepti K.
    Jiang, Yun
    Ma, Dan
    Fisher, Elizabeth
    Rudick, Richard A.
    Raza, Praneeta
    Kilbane, Meghan
    Cohen, Jeffrey A.
    Sakaie, Ken
    Lowe, Mark J.
    Griswold, Mark A.
    Nakamura, Kunio
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2023, 79
  • [39] Low Rank Magnetic Resonance Fingerprinting
    Mazor, Gal
    Weizman, Lior
    Tal, Assaf
    Eldar, Yonina C.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 439 - 442
  • [40] Physics-based polarimetric BRDF models
    Duncan, DD
    Hahn, DV
    Thomas, ME
    OPTICAL DIAGNOSTIC METHODS FOR INORGANIC MATERIALS III, 2003, 5192 : 129 - 140