Physics-Based Decoding Improves Magnetic Resonance Fingerprinting

被引:1
|
作者
Heo, Juyeon [1 ]
Song, Pingfan [1 ]
Liu, Weiyang [1 ]
Weller, Adrian [1 ,2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会;
关键词
Magnetic Resonance Fingerprinting; Deep Neural Network; Physics-informed learning; Generalizability; Bloch equations; SLIDING-WINDOW; FRAMEWORK;
D O I
10.1007/978-3-031-43895-0_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic Resonance Fingerprinting (MRF) is a promising approach for fast Quantitative Magnetic Resonance Imaging (QMRI). However, existing MRF methods suffer from slow imaging speeds and poor generalization performance on radio frequency pulse sequences generated in various scenarios. To address these issues, we propose a novel MRI physics-informed regularization for MRF. The proposed approach adopts a supervised encoder-decoder framework, where the encoder performs the main task, i.e. predicting the target tissue properties from input magnetic responses, and the decoder servers as a regularization via reconstructing the inputs from the estimated tissue properties using a Bloch-equation based MRF physics model. The physics-based decoder improves the generalization performance and uniform stability by a considerable margin in practical out-of-distribution settings. Extensive experiments verified the effectiveness of the proposed approach and achieved state-of-the-art performance on tissue property estimation.
引用
收藏
页码:446 / 456
页数:11
相关论文
共 50 条
  • [1] Quantitative Magnetic Resonance Imaging: From Fingerprinting to Integrated Physics-Based Models
    Dong, Guozhi
    Hintermueller, Michael
    Papafitsoros, Kostas
    SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (02): : 927 - 971
  • [2] Physics-based reconstruction methods for magnetic resonance imaging
    Wang, Xiaoqing
    Tan, Zhengguo
    Scholand, Nick
    Roeloffs, Volkert
    Uecker, Martin
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2200):
  • [3] Physics-based reconstruction methods for magnetic resonance imaging (vol 379, 20200196, 2021)
    Wang, Xiaoqing
    Tan, Zhengguo
    Scholand, Nick
    Roeloffs, Volkert
    Uecker, Martin
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2206):
  • [4] Magnetic resonance fingerprinting
    Ma, Dan
    Gulani, Vikas
    Seiberlich, Nicole
    Liu, Kecheng
    Sunshine, Jeffrey L.
    Duerk, Jeffrey L.
    Griswold, Mark A.
    NATURE, 2013, 495 (7440) : 187 - 192
  • [5] Magnetic resonance fingerprinting
    Dan Ma
    Vikas Gulani
    Nicole Seiberlich
    Kecheng Liu
    Jeffrey L. Sunshine
    Jeffrey L. Duerk
    Mark A. Griswold
    Nature, 2013, 495 : 187 - 192
  • [6] Physics-Based Characters
    Hertzmann, Aaron
    Zordan, Victor
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2011, 31 (04) : 20 - 21
  • [7] Physics-based design of microstrip magnetic dipolesusing cavity model
    Ferreira D.B.
    Bianchi I.
    De Paula C.B.
    Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2020, 19 (01): : 106 - 116
  • [8] A Physics-Based Circuit Model for Nonlinear Magnetic Material Characteristics
    Dulal, Saurav
    Sohid, Sadia Binte
    Cui, Han
    Gu, Gong
    Costinett, Daniel J.
    Tolbert, Leon M.
    2024 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2024, : 396 - 401
  • [9] Physics-Driven Synthetic Data Learning for Biomedical Magnetic Resonance: The imaging physics-based data synthesis paradigm for artificial intelligence
    Yang, Qinqin
    Wang, Zi
    Guo, Kunyuan
    Cai, Congbo
    Qu, Xiaobo
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (02) : 129 - 140
  • [10] Magnetic resonance fingerprinting based on realistic vasculature in mice
    Pouliot, Philippe
    Gagnon, Louis
    Lam, Tina
    Avti, Pramod K.
    Bowen, Chris
    Desjardins, Michele
    Kakkar, Ashok K.
    Thorin, Eric
    Sakadzic, Sava
    Boas, David A.
    Lesage, Frederic
    NEUROIMAGE, 2017, 149 : 436 - 445