Fair detour domination of graphs

被引:0
|
作者
Parthipan, J. Vijaya Xavier [1 ]
Ebenezer, D. Jeba [1 ]
机构
[1] Palayamkottai Manonmaniam Sundaranar Univ, St Johns Coll, Dept Math, Tirunelveli 627012, Tamil Nadu, India
关键词
Detour number; detour dominating set; fair dominating set; fair detour dominating set;
D O I
10.1142/S1793830923500830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set D subset of V of a connected graph G=(V,E) is called a fair detour dominating set if D is a detour dominating set and every two vertices not in D has same number of neighbors in D. The fair detour domination number, f gamma d, of G is the minimum cardinality of fair detour dominating sets. A fair detour dominating set of cardinality f gamma d is called a f gamma d-set of G. The fair detour domination number of some well-known graphs are determined. We have shown that, If G is a connected graph with p >= 4 and delta >= 2 then f gamma d(G) <= p -2. It is shown that for given positive integers p >= 4, k, m such that 2 <= k <= m <= p -2 there exists a connected graph G of order p such that gamma d=k and f gamma d=m.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Detour eccentric and detour distance degree sequences in graphs
    Narayan, K. R. Sandeep
    Sunitha, M. S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (03)
  • [22] Characterization of Upper Detour Monophonic Domination Number
    Khayyoom, M. Mohammed Abdul
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (03): : 315 - 324
  • [23] On Detour spectra of some graphs
    Ayyaswamy, S.K.
    Balachandran, S.
    World Academy of Science, Engineering and Technology, 2010, 43 : 529 - 531
  • [24] Graphs with the same detour matrix
    Randic, M
    DeAlba, LM
    Harris, FE
    CROATICA CHEMICA ACTA, 1998, 71 (01) : 53 - 68
  • [25] On detour spectra of some graphs
    Ayyaswamy, S.K.
    Balachandran, S.
    World Academy of Science, Engineering and Technology, 2010, 67 : 529 - 531
  • [26] Detour Index of Bicyclic Graphs
    Qi, Xuli
    UTILITAS MATHEMATICA, 2013, 90 : 101 - 113
  • [27] Detour-saturated graphs
    Beineke, LW
    Dunbar, JE
    Frick, M
    JOURNAL OF GRAPH THEORY, 2005, 49 (02) : 116 - 134
  • [28] Detour Saturated Oriented Graphs
    van Aardt, Susan A.
    Frick, Marietjie
    Dunbar, Jean E.
    Oellermann, Ortrud
    UTILITAS MATHEMATICA, 2009, 79 : 167 - 180
  • [29] On -Domination in Graphs
    Das, Angsuman
    Laskar, Renu C.
    Rad, Nader Jafari
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 193 - 205
  • [30] A Linear Time Algorithm for Weighted k-Fair Domination Problem in Cactus Graphs
    Novak T.
    Žerovnik J.
    Operations Research Forum, 3 (3)