Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2

被引:2
|
作者
Wang, Qiuyu [1 ]
Wang, Hening [1 ]
Ren, Xiaoyan [1 ]
Pang, Rui [1 ]
Zhao, Xingju [1 ]
Zhang, Lili [1 ]
Li, Shunfang [1 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Minist Educ, Key Lab Mat Phys, Zhengzhou 450001, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 38期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE; SUPPORT INTERACTIONS; METHANOL SYNTHESIS; PYXAID PROGRAM; SINGLE; CONVERSION; SURFACE; ELECTROREDUCTION; ADSORPTION; DYNAMICS;
D O I
10.1021/acs.jpclett.3c01665
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu-2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 (d-) species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
引用
收藏
页码:8421 / 8427
页数:7
相关论文
共 50 条
  • [41] An effective strategy for CO2 reduction to C1 products using Cu-embedded MoS2 electrocatalyst: DFT study
    Doulassiramane, Thamarainathan
    Arumugam, Natarajan
    Almansour, Abdulrahman I.
    Mahalingam, Sakkarapalayam M.
    Padmanaban, Ramanathan
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (14) : 6932 - 6942
  • [42] Anisotropic heteronanocrystals of Cu2O-2D MoS2 for efficient visible light driven photocatalysis
    Yu, Eun-Jin
    Kim, Heon Chul
    Kim, Hee Jin
    Jung, Su-Yeon
    Ryu, Kwang-Sun
    Choi, Sang-Il
    Hong, Jong Wook
    APPLIED SURFACE SCIENCE, 2021, 538
  • [43] Tuning the content of S vacancies in MoS2 by Cu doping for enhancing catalytic hydrogenation of CO2 to methanol
    Zhou, Yue
    Liu, Fei
    Geng, Shuo
    Yao, Mengqin
    Ma, Jun
    Cao, Jianxin
    MOLECULAR CATALYSIS, 2023, 547
  • [44] Photocatalytic CO2 Reduction and Thermal CO Oxidation to CO2 over Cu/Ni-loaded TiO2 Photo and Thermal Catalysts
    Yoon, Hee Jung
    Yang, Ju Hyun
    Sohn, Youngku
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2020, 29 (02): : 36 - 39
  • [45] Unveiling Electrochemical Reaction Pathways of CO2 Reduction to CN Species at S-Vacancies of MoS2
    Kang, Sungwoo
    Han, Seungwu
    Kang, Youngho
    CHEMSUSCHEM, 2019, 12 (12) : 2671 - 2678
  • [46] How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction
    Hong, Xin
    Chan, Karen
    Tsai, Charlie
    Norskov, Jens K.
    ACS CATALYSIS, 2016, 6 (07): : 4428 - 4437
  • [47] Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres
    Ramos, Manuel
    Galindo-Hernandez, Felix
    Arslan, Ilke
    Sanders, Toby
    Manuel Dominguez, Jose
    SCIENTIFIC REPORTS, 2017, 7
  • [48] Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres
    Manuel Ramos
    Félix Galindo-Hernández
    Ilke Arslan
    Toby Sanders
    José Manuel Domínguez
    Scientific Reports, 7
  • [49] Reaction Mechanism of Cu(I)-Mediated Reductive CO2 Coupling for the Selective Formation of Oxalate: Cooperative CO2 Reduction To Give Mixed-Valence Cu2(CO2•-) and Nucleophilic-Like Attack
    Lan, Jialing
    Liao, Tao
    Zhang, Tonghuan
    Chung, Lung Wa
    INORGANIC CHEMISTRY, 2017, 56 (12) : 6809 - 6819
  • [50] Mn-promoted MoS2 catalysts for CO2 hydrogenation: enhanced methanol selectivity due to MoS2/MnOx interfaces
    Alves, Gustavo A. S.
    Pacholik, Gernot
    Pollitt, Stephan
    Wagner, Tobias
    Rameshan, Raffael
    Rameshan, Christoph
    Foettinger, Karin
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (05) : 1138 - 1147