A VOLUME = MULTIPLICITY FORMULA FOR p-FAMILIES OF IDEALS

被引:1
|
作者
Das, Sudipta [1 ]
机构
[1] 1290 Frenger Mall, Las Cruces, NM 88003 USA
关键词
GRADED FAMILIES; F-SIGNATURE; BODIES; RINGS;
D O I
10.1090/proc/16451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this article, we work with certain families of ideals called pfamilies in rings of prime characteristic. This family of ideals is present in the theories of tight closure, Hilbert-Kunz multiplicity, and F-signature. For each p-family of ideals, we attach an Euclidean object called p-body, which is analogous to the Newton Okounkov body associated with a graded family of ideals. Using the combinatorial properties of p-bodies and algebraic properties of the Hilbert-Kunz multiplicity, we establish a Volume = Multiplicity formula for p-families of mR-primary ideals in a Noetherian local ring R.
引用
收藏
页码:4153 / 4161
页数:9
相关论文
共 50 条
  • [31] Multiplicity of Powers of Path Ideals of A Line Graph
    Shan, Jiawen
    Wang, Zexin
    Lu, Dancheng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (01)
  • [32] Indestructibility of ideals and MAD families
    Chodounsky, David
    Guzman, Osvaldo
    ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (05)
  • [33] Rings with Zassenhaus families of ideals
    Buckner, Joshua
    Dugas, Manfred
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (06) : 2133 - 2142
  • [34] Intersection numbers of families of ideals
    Hrusak, M.
    Martinez-Ranero, C. A.
    Ramos-Garcia, U. A.
    Tellez-Nieto, O. A.
    ARCHIVE FOR MATHEMATICAL LOGIC, 2013, 52 (3-4) : 403 - 417
  • [35] Intersection numbers of families of ideals
    M. Hrušák
    C. A. Martínez-Ranero
    U. A. Ramos-García
    O. A. Téllez-Nieto
    Archive for Mathematical Logic, 2013, 52 : 403 - 417
  • [36] A weight multiplicity formula for Demazure modules
    Ion, B
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (05) : 311 - 323
  • [37] COMPUTER IMPLEMENTATION OF FREUDENTHALS MULTIPLICITY FORMULA
    BECK, RE
    KOLMAN, B
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1972, 75 (04): : 350 - &
  • [38] A new subadditivity formula for test ideals
    Smolkin, Daniel
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (03) : 1132 - 1172
  • [39] Closure formula for ideals in intermediate rings
    Kharbhih, John Paul Jala
    Dutta, Sanghita
    APPLIED GENERAL TOPOLOGY, 2020, 21 (02): : 195 - 200
  • [40] Ulrich ideals in numerical semigroup rings of small multiplicity
    Endo, Naoki
    Goto, Shiro
    JOURNAL OF ALGEBRA, 2022, 611 : 435 - 479