A Comparative Study of the Kalman Filter and the LSTM Network for the Remaining Useful Life Prediction of SOFC

被引:5
|
作者
Sheng, Chuang [2 ]
Zheng, Yi [2 ]
Tian, Rui [1 ]
Xiang, Qian [2 ]
Deng, Zhonghua [2 ]
Fu, Xiaowei [3 ]
Li, Xi [2 ,3 ]
机构
[1] Jingchu Univ Technol, Sch Gen Aviat, Jingmen 448000, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Educ Minist, Wuhan 430074, Peoples R China
[3] Shenzhen Huazhong Univ, Sci & Technol Res Inst, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
SOFC; remaining useful life prediction; Kalman filtering; long short-term memory network; OXIDE FUEL-CELL; HYBRID METHOD; MODEL; PROGNOSTICS;
D O I
10.3390/en16093628
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The solid oxide fuel cell (SOFC) system is complicated because the characteristics of gas, heat, and electricity are intricately coupled. During the operation of the system, problems such as frequent failures and a decrease in the stack's performance have caused the SOFC system to work less well and greatly shortened the SOFC's practical life. As such, it is essential to accurately forecast its remaining useful life (RUL) to make the system last longer and cut down on economic losses. In this study, both model-based and data-driven prediction methods are used to make predictions about the RUL of SOFC. First, the linear degradation model of the SOFC system is established by introducing degradation resistance as the index of health status. Using the Kalman filtering (KF) method, the health status of SOFC is evaluated online. The results of the health state estimation indicated that the KF algorithm is accurate enough to provide a good basis for the model-based RUL prediction. Then, a long short-term memory (LSTM) network-recursive (data-driven) method is presented for RUL prognostics. The multi-step-ahead recursive strategy of updating the network state with actual test data improves the prediction accuracy. Finally, a comparison is made between the LSTM network prediction approach suggested and the model-based KF prognostics. The results of the experiments indicate that the LSTM network is more suitable for RUL prediction than the KF algorithm.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] LSTM-Based Broad Learning System for Remaining Useful Life Prediction
    Wang, Xiaojia
    Huang, Ting
    Zhu, Keyu
    Zhao, Xibin
    MATHEMATICS, 2022, 10 (12)
  • [32] Remaining useful life prediction of rotating machinery based on KPCA-LSTM
    Cao X.
    Ye Y.
    Zhao Y.
    Duan Y.
    Yang X.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (24): : 81 - 91
  • [33] Remaining Useful Life Prediction for Aero-Engine Based on LSTM and CNN
    Ruan, Diwang
    Wu, Yuheng
    Yan, Jianping
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6706 - 6712
  • [34] Remaining useful life prediction for aircraft engine based on LSTM-DBN
    Li J.
    Chen Y.
    Xiang H.
    Cai Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (07): : 1637 - 1644
  • [35] Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
    Yang, Jinsong
    Peng, Yizhen
    Xie, Jingsong
    Wang, Pengxi
    SENSORS, 2022, 22 (12)
  • [36] Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network
    Liang H.
    Yuan P.
    Gao Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (10): : 213 - 219
  • [37] REMAINING USEFUL LIFE PREDICTION OF AIRCRAFT ENGINE BASED ON BI-LSTM NETWORK INTEGRATED WITH ATTENTION MECHANISM
    Qu, Guixian
    Qiu, Tian
    Ding, Shuiting
    Ma, Long
    Yuan, Qiyu
    Ma, Qinglin
    Si, Yang
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 1, 2024,
  • [38] A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network
    An, Qinglong
    Tao, Zhengrui
    Xu, Xingwei
    El Mansori, Mohamed
    Chen, Ming
    MEASUREMENT, 2020, 154
  • [39] A MDA-LSTM network for remaining useful life estimation of lithium batteries
    Wang, Xiaohua
    Ni, Nanbing
    Hu, Min
    Dai, Ke
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 129 - 140
  • [40] An Improved Particle Filter Method for Accurate Remaining Useful Life Prediction
    Huang, Dengshan
    Wang, Meinan
    Zhao, Shuai
    Wen, Pengfei
    Chen, Shaowei
    Dou, Zhi
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,