A modified seahorse optimization algorithm based on chaotic maps for solving global optimization and engineering problems

被引:19
|
作者
Ozbay, Feyza Altunbey [1 ]
机构
[1] Firat Univ, Fac Engn, Software Engn, Elazig, Turkiye
关键词
Chaotic map; Global optimization; Metaheuristics; Nature -inspired optimization; Seahorse optimization; SEARCH ALGORITHM;
D O I
10.1016/j.jestch.2023.101408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metaheuristic optimization algorithms are global optimization approaches that manage the search process to efficiently explore search spaces associated with different optimization problems. Seahorse optimization (SHO) is a novel swarm-based metaheuristic optimization method inspired by certain behaviors of sea horses. The SHO algorithm mimics the movement, hunting, and breeding behavior of sea horses in nature. Chaotic maps are effectively used to improve the performance of metaheuristic algorithms by avoiding the local optimum and increasing the speed of convergence. In this study, 10 different chaotic maps have been employed for the first time to produce chaotic values rather than random values in SHO, increasing the performance of the method. The purpose of using chaotic maps that generate chaotic values to their random values in SHO is to increase the convergence speed of the original SHO algorithm and avoid the local optimum. 33 different benchmark functions, consisting of unimodal, multimodal, fixeddimension multimodal, and CEC2019, have been utilized to assess the performance of Chaotic SHO (CSHO), which is first introduced in this study. In addition, the proposed CSHO has been compared with four metaheuristic algorithms in the literature, namely Sine Cosine Algorithm, Salp Swarm Algorithm, Whale Optimization Algorithm, and Particle Swarm Optimization. Statistical analyses of the obtained results have been also performed. The proposed CSHO is then implemented to 4 different real-world engineering design problems, including the welded beam, pressure vessel, tension/compression spring, and speed reducer. The results obtained with CSHO are compared with popular metaheuristic methods in the literature. Experimental results show that it gives successful and promising results compared to the original SHO algorithm.(c) 2023 The Authors. Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
下载
收藏
页数:26
相关论文
共 50 条
  • [31] A new chaotic Levy flight distribution optimization algorithm for solving constrained engineering problems
    Yildiz, Betul Sultan
    Kumar, Sumit
    Pholdee, Nantiwat
    Bureerat, Sujin
    Sait, Sadiq M.
    Yildiz, Ali Riza
    EXPERT SYSTEMS, 2022, 39 (08)
  • [32] A Modified Firefly Algorithm for Solving Optimization Problems
    Chaudhary, Kaylash
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2024, 23 (03)
  • [33] An algorithm of global optimization for solving layout problems
    Feng, EM
    Wang, XL
    Wang, XM
    Teng, HF
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 114 (02) : 430 - 436
  • [34] Opposition-based Learning Cooking Algorithm (OLCA) for solving global optimization and engineering problems
    Gopi, S.
    Mohapatra, Prabhujit
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (05):
  • [35] Chaotic catfish particle swarm optimization for solving global numerical optimization problems
    Chuang, Li-Yeh
    Tsai, Sheng-Wei
    Yang, Cheng-Hong
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (16) : 6900 - 6916
  • [36] Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems
    Pan, Jeng-Shyang
    Zhang, Li-Gang
    Wang, Ruo-Bin
    Snasel, Vaclav
    Chu, Shu-Chuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 202 : 343 - 373
  • [37] CSCAHHO: Chaotic hybridization algorithm of the Sine Cosine with Harris Hawk optimization algorithms for solving global optimization problems
    Zhang, Yu-Jun
    Yan, Yu-Xin
    Zhao, Juan
    Gao, Zheng-Ming
    PLOS ONE, 2022, 17 (05):
  • [38] A Parallel Compact Gannet Optimization Algorithm for Solving Engineering Optimization Problems
    Pan, Jeng-Shyang
    Sun, Bing
    Chu, Shu-Chuan
    Zhu, Minghui
    Shieh, Chin-Shiuh
    MATHEMATICS, 2023, 11 (02)
  • [39] An Improved Hydrologic Cycle Optimization Algorithm for Solving Engineering Optimization Problems
    Qiu, Haiyun
    Xue, Bowen
    Niu, Ben
    Zhou, Tianwei
    Lu, Junrui
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2022, PT I, 2022, : 117 - 127
  • [40] Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems
    Wang, Shuang
    Hussien, Abdelazim G.
    Jia, Heming
    Abualigah, Laith
    Zheng, Rong
    MATHEMATICS, 2022, 10 (10)