Feeling the strain: Enhancing the electrochemical performance of olivine LiMnPO4 as cathode materials for Li-ion batteries through strain effects

被引:5
|
作者
Oukahou, Said [1 ]
Elomrani, Abdelali [1 ]
Maymoun, Mohammad [1 ]
Sbiaai, Khalid [1 ]
Hasnaoui, Abdellatif [1 ]
机构
[1] Sultan Moulay Slimane Univ Beni Mellal, Polydisciplinary Fac Khouribga, Lab LS2ME, BP 145, Khouribga, Morocco
关键词
Lithium-ion batteries; LiMnPO4; Density functional theory; Biaxial strain; Barrier energy; Anti-site defect; ANTISITE DEFECTS; PARTICLE-SIZE; LIMPO4; M; LITHIUM; FE; LIFEPO4; MN; ENERGY; LIFE0.5MN0.5PO4; CONDUCTIVITY;
D O I
10.1016/j.est.2023.109663
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Currently, the improvement of Li-ion batteries (LIBs) is more important than ever, especially due to the increasing spread and rapid progress of electric vehicles and high-tech applications. Materials used for positive electrodes are one of the main constituents of batteries, which typically determine their electrochemical efficiency. Phospho-olivine LiMnPO4 (LMP) material has been regarded as a potential positive electrode material for LIBs due to its outstanding properties. However, it suffers from low electronic and ionic conductivity. Therefore, this work aims to overcome these drawbacks by applying a biaxial strain to LMP. In this regard, we used density functional theory calculations to investigate the effect of biaxial strain on the dynamic and thermal stabilities, structural, electronic, ionic diffusion, electrochemical potential, and defect properties of LiMnPO4 (LMP) structure, as well as on the Average (Mn-O, Li-O and P-O) bond lengths, electrical conductivity, and charge transfer. Moreover, the influence of anti-site defects on the ionic conductivity of LMP compound was evaluated. Our findings suggest that the biaxial tensile strain has a remarkable effect on the rate performance of LMP cathode material. A biaxial tensile strain of +2% reduces the band gap of LMP from 3.51 to 3.41 eV, and ameliorates the diffusion coefficient by 100 times. Furthermore, the migration barrier was calculated to be 0.37 eV for strained (+2%) defective MP, lower than 1.12 eV for unstrained defective MP, indicating that biaxial tensile strain can mitigate the negative effect of anti-site defects on Li-ion migration. These results can prompt us to suggest biaxial tensile strain as a good strategy for improving the electrochemical performance of LMP as cathode material for LIBs. Furthermore, this study may supply insights to cathode material designers and engineers on the importance of an appropriate biaxial strain value to improve the rate performance of LiMnPO4 as cathode materials for LIB batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries
    Fang, Haisheng
    Yi, Huihua
    Hu, Chenglin
    Yang, Bin
    Yao, Yaochun
    Ma, Wenhui
    Dai, Yongnian
    ELECTROCHIMICA ACTA, 2012, 71 : 266 - 269
  • [22] Synthesis and performance of LiMnPO4 used as cathode material for lithium ion batteries
    Chang, XY
    Wang, ZX
    Li, XH
    Kuang, Q
    Peng, WJ
    Guo, HJ
    Zhang, YH
    ACTA PHYSICO-CHIMICA SINICA, 2004, 20 (10) : 1249 - 1252
  • [23] The Prepared and Electrochemical Property of Mg Doped LiMnPO4 Nanoplates as Cathode Materials for Lithium-Ion Batteries
    Dong, Youzhong
    Xie, Hui
    Song, Jie
    Xu, Maowen
    Zhao, Yanming
    Goodenough, John B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) : A995 - A998
  • [24] The Effects of Carbon Nanotubes on the Electrochemical Performance of LiFePO4 Composite Cathode Materials for Li-ion Batteries
    Zhang, Haiyan
    Ran, Qiyan
    Chen, Yuting
    Zeng, Zhifeng
    Peng, Youyi
    Chen, Yimin
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 516 - 520
  • [25] Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries
    Hu, Lingjun
    Qiu, Bao
    Xia, Yonggao
    Qin, Zhihong
    Qin, Laifen
    Zhou, Xufeng
    Liu, Zhaoping
    JOURNAL OF POWER SOURCES, 2014, 248 : 246 - 252
  • [26] Improved electrochemical performances of LiMnPO4 synthesized by a hydrothermal method for Li-ion supercapatteries
    Natarjan Priyadharsini
    Amirthalingam Shanmugavani
    Subramani Surendran
    Baskar Senthilkumar
    Leonid Vasylechko
    Ramakrishnan Kalai Selvan
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 18553 - 18565
  • [27] The potentials of LiMnPO4 cathode material for aqueous Li-ion batteries: An investigation into solid state and green chemistry approaches
    Nwachukwu, Iheke Michael
    Nwanya, Assumpta Chinwe
    Ekwealor, A. B. C.
    Ezema, Fabian I.
    APPLIED SURFACE SCIENCE ADVANCES, 2024, 19
  • [28] Research Progress on LiMnPO4 as High Voltage Cathode Materials for Lithium Ion Batteries
    Chang Longjiao
    Luo Shaohua
    Wang Zhiyuan
    Liu Yanguo
    Zhai Yuchun
    Zheng Jianjie
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (09) : 2297 - 2304
  • [29] Research progress on LiMnPO4 as high voltage cathode materials for lithium ion batteries
    Chang, Longjiao
    Luo, Shaohua
    Wang, Zhiyuan
    Liu, Yanguo
    Zhai, Yuchun
    Zheng, Jianjie
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2014, 43 (09): : 2297 - 2304
  • [30] Improved electrochemical performances of LiMnPO4 synthesized by a hydrothermal method for Li-ion supercapatteries
    Priyadharsini, Natarjan
    Shanmugavani, Amirthalingam
    Surendran, Subramani
    Senthilkumar, Baskar
    Vasylechko, Leonid
    Selvan, Ramakrishnan Kalai
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (21) : 18553 - 18565