OWAdapt: An adaptive loss function for deep learning using OWA operators

被引:4
|
作者
Maldonado, Sebastian [1 ,4 ]
Vairetti, Carla [2 ,4 ]
Jara, Katherine [2 ]
Carrasco, Miguel [2 ]
Lopez, Julio [3 ]
机构
[1] Univ Chile, Sch Econ & Business, Dept Management Control & Informat Syst, Santiago, Chile
[2] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Santiago, Chile
[3] Univ Diego Portales, Fac Ingn & Ciencias, Ejercito 441, Santiago, Chile
[4] Inst Sistemas Complejos Ingn ISCI, Santiago, Chile
关键词
OWA operators; Loss functions; Class-imbalance classification; Deep learning; SUPPORT VECTOR MACHINES; SMOTE;
D O I
10.1016/j.knosys.2023.111022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel adaptive loss function for enhancing deep learning performance in classification tasks. Specifically, we redefine the cross-entropy loss to effectively address class-level noise conditions, including the challenging problem of class imbalance. Our approach introduces aggregation operators to improve classification accuracy. The rationale behind our proposed method lies in the iterative up-weighting of class-level components within the loss function, focusing on those with larger errors. To achieve this, we employ the ordered weighted average (OWA) operator and combine it with an adaptive scheme for gradient-based learning. The main finding is that our method outperforms other commonly used loss functions, such as the standard crossentropy or focal loss, across various binary and multiclass classification tasks. Furthermore, we explore the influence of hyperparameters associated with the OWA operators and propose a default configuration that performs well across different experimental settings.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Using OWA Operators to Integrate Group Attitudes towards Consensus
    Palomares, Ivan
    Liu, Jun
    Xu, Yang
    Martinez, Luis
    KNOWLEDGE ENGINEERING AND MANAGEMENT, 2011, 123 : 273 - +
  • [42] Building ensemble classifiers using belief functions and OWA operators
    Reformat, Marek
    Yager, Ronald R.
    SOFT COMPUTING, 2008, 12 (06) : 543 - 558
  • [43] Building ensemble classifiers using belief functions and OWA operators
    Marek Reformat
    Ronald R. Yager
    Soft Computing, 2008, 12 : 543 - 558
  • [44] AESA Adaptive Beamforming Using Deep Learning
    Bianco, Simone
    Napoletano, Paolo
    Raimondi, Alberto
    Feo, Maurizio
    Petraglia, Giovanni
    Vinetti, Pietro
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [45] Adaptive Ultrasound Beamforming Using Deep Learning
    Luijten, Ben
    Cohen, Regev
    de Bruijn, Frederik J.
    Schmeitz, Harold A. W.
    Mischi, Massimo
    Eldar, Yonina C.
    van Sloun, Ruud J. G.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 3967 - 3978
  • [46] Neighborhood Adaptive Loss Function for Deep Learning-Based Point Cloud Coding With Implicit and Explicit Quantization
    Guarda, Andre F. R.
    Rodrigues, Nuno M. M.
    Pereira, Fernando
    IEEE MULTIMEDIA, 2021, 28 (03) : 107 - 116
  • [47] Deep learning with adaptive learning rate using laplacian score
    Chandra, B.
    Sharma, Rajesh K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 63 : 1 - 7
  • [48] A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology
    Clough, James R.
    Byrne, Nicholas
    Oksuz, Ilkay
    Zimmer, Veronika A.
    Schnabel, Julia A.
    King, Andrew P.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 8766 - 8778
  • [49] Fairness for Deep Learning Predictions Using Bias Parity Score Based Loss Function Regularization
    Jain, Bhanu
    Huber, Manfred
    Elmasri, Ramez
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2024, 33 (03)
  • [50] A novel loss function of deep learning in wind speed forecasting
    Chen, Xi
    Yu, Ruyi
    Ullah, Sajid
    Wu, Dianming
    Li, Zhiqiang
    Li, Qingli
    Qi, Honggang
    Liu, Jihui
    Liu, Min
    Zhang, Yundong
    ENERGY, 2022, 238