Hippocampus segmentation in MR brain images using learned fuzzy mask and U-Net

被引:0
|
作者
Sadeghi, Alireza [1 ]
Khutanlou, Hassan [1 ]
机构
[1] Bu Ali Sina Univ, Dept Comp Engn, Hamadan, Iran
来源
2023 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS, IPRIA | 2023年
关键词
Hippocampus; Hippocampus segmentation; Fuzzy mask; CLASSIFICATION; NETWORKS;
D O I
10.1109/IPRIA59240.2023.10147188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hippocampus is an important part of the human brain that is damaged in some diseases such as Alzheimer's, schizophrenia, and epilepsy. This paper presents a new method in hippocampus segmentation which is applicable in the early diagnosis of mentioned diseases. This method has introduced a two-section model to detect the hippocampus region in brain MR images. In the first section, the location of the hippocampus is roughly detected using a U-Net neural network model, and then a fuzzy mask is created around the detected area using a fuzzy function. In the second section, this mask is applied to the brain images and a U-Net neural network is used to segment these masked images, which finally predicts the location of the hippocampus. The main advantage and idea of this method is the use of a pre-trained fuzzy mask, which increases the quality of segmentation. The proposed method in this research was trained and tested using the HARP dataset, which contains 135 T1-weighted MRI volumes and the proposed model reached 0.95 dice in the best case.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Environmental sound segmentation utilizing Mask U-Net
    Sudo, Yui
    Itoyama, Katsutoshi
    Nishida, Kenji
    Nakadai, Kazuhiro
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5340 - 5345
  • [22] Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
    Ullah, Faizad
    Ansari, Shahab U.
    Hanif, Muhammad
    Ayari, Mohamed Arselene
    Chowdhury, Muhammad Enamul Hoque
    Khandakar, Amith Abdullah
    Khan, Muhammad Salman
    SENSORS, 2021, 21 (22)
  • [23] A Probabilistic U-Net for Segmentation of Ambiguous Images
    Kohl, Simon A. A.
    Romera-Paredes, Bernardino
    Meyer, Clemens
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Maier-Hein, Klaus H.
    Eslami, S. M. Ali
    Rezende, Danilo Jimenez
    Ronneberger, Olaf
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [24] Classification of brain MR images based on bleed and calcification using ROI cropped U-Net segmentation and ensemble RNN classifier
    Kakhandaki N.
    Kulkarni S.B.
    International Journal of Information Technology, 2023, 15 (6) : 3405 - 3420
  • [25] Brain tumor segmentation using a hybrid multi resolution U-Net with residual dual attention and deep supervision on MR images
    Sahayam, Subin
    Nenavath, Rahul
    Jayaraman, Umarani
    Prakash, Surya
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [26] Segmentation of Mammogram Images Using U-Net with Fusion of Channel and Spatial Attention Modules (U-Net CASAM)
    Robert Singh, A.
    Vidya, S.
    Hariharasitaraman, S.
    Athisayamani, Suganya
    Hsu, Fang Rong
    Lecture Notes in Networks and Systems, 2024, 966 LNNS : 435 - 448
  • [27] Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI)
    Ruhul Amin Hazarika
    Arnab Kumar Maji
    Raplang Syiem
    Samarendra Nath Sur
    Debdatta Kandar
    Journal of Digital Imaging, 2022, 35 : 893 - 909
  • [28] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [29] Hippocampus Segmentation Using U-Net Convolutional Network from Brain Magnetic Resonance Imaging (MRI)
    Hazarika, Ruhul Amin
    Maji, Arnab Kumar
    Syiem, Raplang
    Sur, Samarendra Nath
    Kandar, Debdatta
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (04) : 893 - 909
  • [30] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219