Identifying sex-specific risk architectures for predicting amyloid deposition using neural networks

被引:2
|
作者
Wang, Linghai [1 ,5 ]
Kolobaric, Antonija [1 ]
Aizenstein, Howard [1 ,2 ,3 ]
Lopresti, Brian [1 ]
Tudorascu, Dana [4 ]
Snitz, Beth [1 ]
Klunk, William [2 ,3 ]
Wu, Minjie [2 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA USA
[2] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA USA
[3] Univ Pittsburgh, Sch Med, Pittsburgh, PA USA
[4] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA USA
[5] Geriatr Psychiat Neuroimaging Lab, Off 52017, UPMC Oxford Bldg,3501 Forbes Ave, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; Small vessel disease; Machine learning; Beta-amyloid; Sex differences; WHITE-MATTER HYPERINTENSITIES; DISEASE; BETA; COGNITION; BURDEN;
D O I
10.1016/j.neuroimage.2023.120147
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In older adults without dementia, White Matter Hyperintensities (WMH) in MRI have been shown to be highly associated with cerebral amyloid deposition, measured by the Pittsburgh compound B (PiB) PET. However, the relation to age, sex, and education in explaining this association is not well understood. We use the voxel counts of regional WMH, age, one-hot encoded sex, and education to predict the regional PiB using a multilayer perceptron with only rectilinear activations using mean squared error. We then develop a novel, robust metric to understand the relevance of each input variable for prediction. Our observations indicate that sex is the most relevant pre-dictor of PiB and that WMH is not relevant for prediction. These results indicate that there is a sex-specific risk architecture for A beta deposition.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Redefining the Bladder Cancer Phenotype Using Sex-Specific Patterns of Familial Risk
    Hanson, Heidi A.
    Martin, Christopher
    Leiser, Claire
    Gupta, Sumati
    Lowrance, William
    Kohlmann, Wendy
    O'Neill, Brock
    Smith, Ken R.
    Alter, Orly
    Greenburg, Samantha
    Camp, Nicola J.
    JOURNAL OF WOMENS HEALTH, 2017, 26 (09) : 1030 - 1030
  • [22] Application of sex-specific markers in identifying the sex of Pyropia haitanensis from different sources
    Ding, Hong-Chang
    Ma, Hui-Ping
    Tang, Long-Chen
    Yan, Xing-Hong
    JOURNAL OF APPLIED PHYCOLOGY, 2025, 37 (01) : 483 - 490
  • [23] Sex-specific risk assessment of PFHxS using a physiologically based pharmacokinetic model
    Sook-Jin Kim
    Hwajin Shin
    Yong-Bok Lee
    Hea-Young Cho
    Archives of Toxicology, 2018, 92 : 1113 - 1131
  • [24] Using Sex-Specific Polygenic Risk to Prognosticate Coronary Artery Disease in Women
    Paruchuri, Kaavya
    Bhukar, Rohan
    Urbut, Sarah
    Ruan, Yunfeng
    Ganesh, Shriienidhie
    Postupaka, Darina
    Natarajan, Pradeep
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (12):
  • [25] Sex-specific risk assessment of PFHxS using a physiologically based pharmacokinetic model
    Kim, Sook-Jin
    Shin, Hwajin
    Lee, Yong-Bok
    Cho, Hea-Young
    ARCHIVES OF TOXICOLOGY, 2018, 92 (03) : 1113 - 1131
  • [26] Predicting Risk of Neuropsychiatric Disorders Using Genotypes and Neural Networks
    Lysenkov, V
    Khan, S.
    Elo, L.
    HUMAN HEREDITY, 2020, 84 (4-5) : 213 - 213
  • [27] Evidence for sex-specific genetic architectures across a spectrum of human complex traits
    Rawlik, Konrad
    Canela-Xandri, Oriol
    Tenesa, Albert
    GENOME BIOLOGY, 2016, 17
  • [28] Evidence for sex-specific genetic architectures across a spectrum of human complex traits
    Konrad Rawlik
    Oriol Canela-Xandri
    Albert Tenesa
    Genome Biology, 17
  • [29] Sex-specific risk factors for recurrent venous thromboembolism
    Olie, Valerie
    Zhu, Tienan
    Martinez, Isabelle
    Scarabin, Pierre-Yves
    Emmerich, Joseph
    THROMBOSIS RESEARCH, 2012, 130 (01) : 16 - 20
  • [30] Microbiome manipulation modifies sex-specific risk for autoimmunity
    Markle, Janet G. M.
    Frank, Daniel N.
    Adeli, Khosrow
    von Bergen, Martin
    Danska, Jayne S.
    GUT MICROBES, 2014, 5 (04) : 485 - 493