Optical and Electrical Memories for Analog Optical Computing

被引:13
|
作者
Kari, Sadra Rahimi [1 ]
Ocampo, Carlos A. Rios A. [2 ,3 ]
Jiang, Lei [4 ]
Meng, Jiawei [5 ]
Peserico, Nicola [5 ]
Sorger, Volker J. J. [5 ,6 ]
Hu, Juejun [7 ]
Youngblood, Nathan [1 ]
机构
[1] Univ Pittsburgh, Swanson Sch Engn, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[2] Univ Maryland, Dept Mat Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[4] Indiana Univ Bloomington, Dept Intelligent Syst Engn, Bloomington, IN 47408 USA
[5] George Washington Univ, Sch Engn & Appl Sci, Dept Elect & Comp Engn, Washington, DC 20052 USA
[6] Optelligence LLC, Upper Marlboro, MD 20772 USA
[7] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
Optical computing; Memory management; Photonics; Ultrafast optics; Optical noise; Computer architecture; Optical crosstalk; Artificial intelligence; neural network hardware; analog computers; optical computing; analog processing circuits; ENERGY; PHOTONICS; TRANSMITTER; EFFICIENT; NETWORKS; DESIGN; SRAM;
D O I
10.1109/JSTQE.2023.3239918
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Key to recent successes in the field of artificial intelligence (AI) has been the ability to train a growing number of parameters which form fixed connectivity matrices between layers of nonlinear nodes. This "deep learning " approach to AI has historically required an exponential growth in processing power which far exceeds the growth in computational throughput of digital hardware as well as trends in processing efficiency. New computing paradigms are therefore required to enable efficient processing of information while drastically improving computational throughput. Emerging strategies for analog computing in the photonic domain have the potential to drastically reduce latency but require the ability to modify optical processing elements according to the learned parameters of the neural network. In this point-of-view article, we provide a forward-looking perspective on both optical and electrical memories coupled to integrated photonic hardware in the context of AI. We also show that for programmed memories, the READ energy-latency-product of photonic random-access memory (PRAM) can be orders of magnitude lower compared to electronic SRAMs. Our intent is to outline path for PRAMs to become an integral part of future foundry processes and give these promising devices relevance for emerging AI hardware.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Meta-optics for spatial optical analog computing
    Abdollahramezani, Sajjad
    Hemmatyar, Omid
    Adibi, Ali
    NANOPHOTONICS, 2020, 9 (13) : 4075 - 4095
  • [22] Analog optical computing by half-wavelength slabs
    Zangeneh-Nejad, Farzad
    Khavasi, Amin
    Rejaei, Behzad
    OPTICS COMMUNICATIONS, 2018, 407 : 338 - 343
  • [23] Optical analog computing enabled broadband structured light
    Wang, Yan
    Yang, Qiang
    Shou, Yichang
    Luo, Hailu
    OPTICS LETTERS, 2023, 48 (08) : 2014 - 2017
  • [24] Time-varying materials for analog optical computing
    Levkovskaya, Valeriya m.
    Kharitonov, Anton V.
    Kharintsev, Sergey s.
    JOURNAL OF OPTICAL TECHNOLOGY, 2024, 91 (05) : 293 - 299
  • [25] STACKED OPTICAL MEMORIES - PASSIVE SCANNING OF OPTICAL MEMORIES
    POHL, D
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1973, QE 9 (06) : 706 - 706
  • [26] When optical microscopy meets all-optical analog computing:A brief review
    Yichang Shou
    Jiawei Liu
    Hailu Luo
    Frontiers of Physics, 2023, 18 (04) : 246 - 261
  • [27] When optical microscopy meets all-optical analog computing: A brief review
    Yichang Shou
    Jiawei Liu
    Hailu Luo
    Frontiers of Physics, 2023, 18
  • [28] When optical microscopy meets all-optical analog computing: A brief review
    Shou, Yichang
    Liu, Jiawei
    Luo, Hailu
    FRONTIERS OF PHYSICS, 2023, 18 (04)
  • [29] Integration in analog optical computing using metasurfaces revisited: toward ideal optical integration
    Babashah, Hossein
    Kavehvash, Zahra
    Koohi, Somayyeh
    Khavasi, Amin
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (06) : 1270 - 1279
  • [30] Optical Memories
    Takeda, Minoru
    Higashino, Satoru
    Ichiura, Shuichi
    Imai, Tadayuki
    Irie, Mitsuru
    Katayama, Ryuichi
    Kikukawa, Takashi
    Kuwahara, Masashi
    Nishiwaki, Hiroshi
    Saiki, Toshiharu
    Shimura, Tsutomu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (09)