Evaluation of bio-oil/biodiesel production from co-pyrolysis of corn straw and natural hair: A new insight towards energy recovery and waste biorefinery

被引:21
|
作者
Xiong, Min [1 ]
Huang, Jin [1 ]
He, Xinrui [1 ]
Zhou, Zhihui [1 ]
Qu, Xiangjiang [1 ]
Faisal, Shah [1 ]
Abomohra, Abdelfatah [1 ]
机构
[1] Chengdu Univ, Sch Architecture & Civil Engn, Dept Environm Engn, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass conversion; Fractionation; Green energy; Integrated routes; Valorization; BIODIESEL; BIOMASS; CARBON; ACID; OILS;
D O I
10.1016/j.fuel.2022.125710
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study evaluated the total energy output and economic feasibility of biodiesel production coupled with value-added nitrogen-containing compounds (NCCs) through co-pyrolysis of low-and high-protein bio-waste. Corn straw (CS) and human hair waste (HW) were used at different blend ratios of 0%, 25%, 50%, 75%, and 100%, w/w. Individual pyrolysis of HW showed 20.7% higher bio-oil yield than CS due to higher volatiles in HW, while co-pyrolysis resulted in synergistic action which enhanced both bio-oil yield with higher fatty acids/ esters proportion. The highest recorded bio-oil yield was 46.3% using 75% HW blend ratio, which showed insignificant difference with that of HW. In addition, co-pyrolysis resulted in reduction of NCCs by 13.7% comparing to HW, with simultaneous enhancement of fatty acids and esters contents by 67.8% and 13.2%, respectively. Therefore, transesterification of co-pyrolyzed bio-oil showed the highest biodiesel proportion of 20.7%, representing 4.7-times and 61.7% higher than CS and HW, respectively. In addition, transesterified co-pyrolyzed bio-oil showed 27.0% NCCs, which was 8.2-times higher than that of CS. Due to the higher calo-rific value of biodiesel compared to bio-oil, biodiesel of the co-pyrolyzed bio-oil showed the highest total energy output in the biorefinery route (3753 MJ/ton biomass), which was higher than the total energy output from the conventional route of bio-oil production from CS (3738 MJ/ton biomass). However, additional revenue of 39,860 US$/ton biomass was estimated in the biorefinery route due to NCCs fraction, which provides a new insight towards future industrial applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Bio-oil production from co-pyrolysis of rice husk and plastic waste
    Anaga, Ekpe S.
    Oji, Akuma A.
    Okwonna, Obumneme O.
    EQA-INTERNATIONAL JOURNAL OF ENVIRONMENTAL QUALITY, 2023, 54 : 27 - 35
  • [2] Energy valorisation of crude glycerol and corn straw by means of slow co-pyrolysis: Production and characterisation of gas, char and bio-oil
    Delgado, Raul
    Guillermo Rosas, Jose
    Gomez, Natalia
    Martinez, Olegario
    Elena Sanchez, Marta
    Cara, Jorge
    FUEL, 2013, 112 : 31 - 37
  • [3] Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production
    Reshad, Ali Shemsedin
    Tiwari, Pankaj
    Goud, Vaibhav V.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2019, 139 : 333 - 343
  • [4] Co-pyrolysis Characteristics and Synergistic Interaction of Waste Polyethylene Terephthalate and Woody Biomass towards Bio-Oil Production
    Anandaram, Harishchander
    Srivastava, Bipin Kumar
    Vijayakumar, B.
    Madhu, P.
    Depoures, Melvin Victor
    Patil, Pravin P.
    Chhabria, Sarika
    Patel, Praveen Bhai
    Prabhakar, S.
    JOURNAL OF CHEMISTRY, 2022, 2022
  • [5] Co-torrefaction of corncob and waste cooking oil coupled with fast co-pyrolysis for bio-oil production
    Wu, Qiuhao
    Zhang, Letian
    Ke, Linyao
    Zhang, Qi
    Cui, Xian
    Fan, Liangliang
    Dai, Anqi
    Xu, Chuangxin
    Zhang, Qihang
    Bob, Krik
    Zou, Rongge
    Liu, Yuhuan
    Ruan, Roger
    Wang, Yunpu
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [6] Sustainable production of bio-oil and carbonaceous materials from biowaste co-pyrolysis
    Li, Fanghua
    Zhao, Kena
    Ng, Tsan Sheng
    Dai, Yanjun
    Wang, Chi-Hwa
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [7] A new insight into high quality syngas production from co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil using response surface methodology
    Zhuang, Xiaozhuang
    Gan, Ziyu
    Chen, Dengyu
    Cen, Kehui
    Ba, Yuping
    Jia, Dongxia
    FUEL, 2022, 324
  • [8] Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil
    Chen, Minzi
    Zhang, Shuping
    Su, Yinhai
    Niu, Xin
    Zhu, Shuguang
    Liu, Xinzhi
    RENEWABLE ENERGY, 2022, 186 : 105 - 114
  • [9] Co-pyrolysis of plastic waste and macroalgae Ulva lactuca, a sustainable valorization approach towards the production of bio-oil and biochar
    Farobie, Obie
    Amrullah, Apip
    Fatriasari, Widya
    Nandiyanto, Asep Bayu Dani
    Ernawati, Lusi
    Karnjanakom, Surachai
    Lee, Seng Hua
    Selvasembian, Rangabhashiyam
    Azelee, Nur Izyan Wan
    Aziz, Muhammad
    RESULTS IN ENGINEERING, 2024, 24
  • [10] Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production
    Wang, Yunpu (wangyunpu@ncu.edu.cn), 1600, Elsevier B.V., Netherlands (124):